We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce a modification of the generalized Pólya urn model containing two urns, and we study the number of balls $B_j(n)$ of a given color $j\in\{1,\ldots,J\}$ added to the urns after n draws, where $J\in\mathbb{N}$. We provide sufficient conditions under which the random variables $(B_j(n))_{n\in\mathbb{N}}$, properly normalized and centered, converge weakly to a limiting random variable. The result reveals a similar trichotomy as in the classical case with one urn, one of the main differences being that in the scaling we encounter 1-periodic continuous functions. Another difference in our results compared to the classical urn models is that the phase transition of the second-order behavior occurs at $\sqrt{\rho}$ and not at $\rho/2$, where $\rho$ is the dominant eigenvalue of the mean replacement matrix.
Consider the quadratic family $T_a(x) = a x (1 - x)$ for $x \in [0, 1]$ and mixing Collet–Eckmann (CE) parameters $a \in (2,4)$. For bounded $\varphi $, set $\tilde \varphi _{a} := \varphi - \int \varphi \, d\mu _a$, with $\mu _a$ the unique acim of $T_a$, and put $(\sigma _a (\varphi ))^2 := \int \tilde \varphi _{a}^2 \, d\mu _a + 2 \sum _{i>0} \int \tilde \varphi _{a} (\tilde \varphi _{a} \circ T^i_{a}) \, d\mu _a$. For any mixing Misiurewicz parameter $a_{*}$, we find a positive measure set $\Omega _{*}$ of mixing CE parameters, containing $a_{*}$ as a Lebesgue density point, such that for any Hölder $\varphi $ with $\sigma _{a_{*}}(\varphi )\ne 0$, there exists $\epsilon _\varphi>0$ such that, for normalized Lebesgue measure on $\Omega _{*}\cap [a_{*}-\epsilon _\varphi , a_{*}+\epsilon _\varphi ]$, the functions $\xi _i(a)=\tilde \varphi _a(T_a^{i+1}(1/2))/\sigma _a (\varphi )$ satisfy an almost sure invariance principle (ASIP) for any error exponent $\gamma>2/5$. (In particular, the Birkhoff sums satisfy this ASIP.) Our argument goes along the lines of Schnellmann’s proof for piecewise expanding maps. We need to introduce a variant of Benedicks–Carleson parameter exclusion and to exploit fractional response and uniform exponential decay of correlations from Baladi et al [Whitney–Hölder continuity of the SRB measure for transversal families of smooth unimodal maps. Invent. Math.201 (2015), 773–844].
We prove that the local time of random walks conditioned to stay positive converges to the corresponding local time of three-dimensional Bessel processes by proper scaling. Our proof is based on Tanaka’s pathwise construction for conditioned random walks and the derivation of asymptotics for mixed moments of the local time.
This paper analyzes the training process of generative adversarial networks (GANs) via stochastic differential equations (SDEs). It first establishes SDE approximations for the training of GANs under stochastic gradient algorithms, with precise error bound analysis. It then describes the long-run behavior of GAN training via the invariant measures of its SDE approximations under proper conditions. This work builds a theoretical foundation for GAN training and provides analytical tools to study its evolution and stability.
In 2008, Tóth and Vető defined the self-repelling random walk with directed edges as a non-Markovian random walk on $\unicode{x2124}$: in this model, the probability that the walk moves from a point of $\unicode{x2124}$ to a given neighbor depends on the number of previous crossings of the directed edge from the initial point to the target, called the local time of the edge. Tóth and Vető found that this model exhibited very peculiar behavior, as the process formed by the local times of all the edges, evaluated at a stopping time of a certain type and suitably renormalized, converges to a deterministic process, instead of a random one as in similar models. In this work, we study the fluctuations of the local times process around its deterministic limit, about which nothing was previously known. We prove that these fluctuations converge in the Skorokhod $M_1$ topology, as well as in the uniform topology away from the discontinuities of the limit, but not in the most classical Skorokhod topology. We also prove the convergence of the fluctuations of the aforementioned stopping times.
We consider parallel single-server queues in heavy traffic with randomly split Hawkes arrival processes. The service times are assumed to be independent and identically distributed (i.i.d.) in each queue and are independent in different queues. In the critically loaded regime at each queue, it is shown that the diffusion-scaled queueing and workload processes converge to a multidimensional reflected Brownian motion in the non-negative orthant with orthonormal reflections. For the model with abandonment, we also show that the corresponding limit is a multidimensional reflected Ornstein–Uhlenbeck diffusion in the non-negative orthant.
In this paper, we consider the convergence rate with respect to Wasserstein distance in the invariance principle for deterministic non-uniformly hyperbolic systems. Our results apply to uniformly hyperbolic systems and large classes of non-uniformly hyperbolic systems including intermittent maps, Viana maps, unimodal maps and others. Furthermore, as a non-trivial application to the homogenization problem, we investigate the Wasserstein convergence rate of a fast–slow discrete deterministic system to a stochastic differential equation.
We study homogenization for a class of non-symmetric pure jump Feller processes. The jump intensity involves periodic and aperiodic constituents, as well as oscillating and non-oscillating constituents. This means that the noise can come both from the underlying periodic medium and from external environments, and is allowed to have different scales. It turns out that the Feller process converges in distribution, as the scaling parameter goes to zero, to a Lévy process. As special cases of our result, some homogenization problems studied in previous works can be recovered. We also generalize the approach to the homogenization of symmetric stable-like processes with variable order. Moreover, we present some numerical experiments to demonstrate the usage of our homogenization results in the numerical approximation of first exit times.
Under the assumption that sequences of graphs equipped with resistances, associated measures, walks and local times converge in a suitable Gromov-Hausdorff topology, we establish asymptotic bounds on the distribution of the
$\varepsilon$
-blanket times of the random walks in the sequence. The precise nature of these bounds ensures convergence of the
$\varepsilon$
-blanket times of the random walks if the
$\varepsilon$
-blanket time of the limiting diffusion is continuous at
$\varepsilon$
with probability 1. This result enables us to prove annealed convergence in various examples of critical random graphs, including critical Galton-Watson trees and the Erdős-Rényi random graph in the critical window. We highlight that proving continuity of the
$\varepsilon$
-blanket time of the limiting diffusion relies on the scale invariance of a finite measure that gives rise to realizations of the limiting compact random metric space, and therefore we expect our results to hold for other examples of random graphs with a similar scale invariance property.
We consider the random splitting and aggregating of Hawkes processes. We present the random splitting schemes using the direct approach for counting processes, as well as the immigration–birth branching representations of Hawkes processes. From the second scheme, it is shown that random split Hawkes processes are again Hawkes. We discuss functional central limit theorems (FCLTs) for the scaled split processes from the different schemes. On the other hand, aggregating multivariate Hawkes processes may not necessarily be Hawkes. We identify a necessary and sufficient condition for the aggregated process to be Hawkes. We prove an FCLT for a multivariate Hawkes process under a random splitting and then aggregating scheme (under certain conditions, transforming into a Hawkes process of a different dimension).
We study a stochastic compartmental susceptible–infected (SI) epidemic process on a configuration model random graph with a given degree distribution over a finite time interval. We split the population of graph vertices into two compartments, namely, S and I, denoting susceptible and infected vertices, respectively. In addition to the sizes of these two compartments, we keep track of the counts of SI-edges (those connecting a susceptible and an infected vertex) and SS-edges (those connecting two susceptible vertices). We describe the dynamical process in terms of these counts and present a functional central limit theorem (FCLT) for them as the number of vertices in the random graph grows to infinity. The FCLT asserts that the counts, when appropriately scaled, converge weakly to a continuous Gaussian vector semimartingale process in the space of vector-valued càdlàg functions endowed with the Skorokhod topology. We discuss applications of the FCLT in percolation theory and in modelling the spread of computer viruses. We also provide simulation results illustrating the FCLT for some common degree distributions.
Branching-stable processes have recently appeared as counterparts of stable subordinators, when addition of real variables is replaced by branching mechanisms for point processes. Here we are interested in their domains of attraction and describe explicit conditions for a branching random walk to converge after a proper magnification to a branching-stable process. This contrasts with deep results obtained during the past decade on the asymptotic behavior of branching random walks and which involve either shifting without rescaling, or demagnification.
We investigate random minimal factorizations of the n-cycle, that is, factorizations of the permutation
$(1 \, 2 \cdots n)$
into a product of cycles
$\tau_1, \ldots, \tau_k$
whose lengths
$\ell(\tau_1), \ldots, \ell(\tau_k)$
satisfy the minimality condition
$\sum_{i=1}^k(\ell(\tau_i)-1)=n-1$
. By associating to a cycle of the factorization a black polygon inscribed in the unit disk, and reading the cycles one after another, we code a minimal factorization by a process of colored laminations of the disk. These new objects are compact subsets made of red noncrossing chords delimiting faces that are either black or white. Our main result is the convergence of this process as
$n \rightarrow \infty$
, when the factorization is randomly chosen according to Boltzmann weights in the domain of attraction of an
$\alpha$
-stable law, for some
$\alpha \in (1,2]$
. The limiting process interpolates between the unit circle and a colored version of Kortchemski’s
$\alpha$
-stable lamination. Our principal tool in the study of this process is a new bijection between minimal factorizations and a model of size-conditioned labeled random trees whose vertices are colored black or white, as well as the investigation of the asymptotic properties of these trees.
We obtain quenched almost sure invariance principles (with convergence rates) for random Young towers if the average measure of the tail of return times to the base of random towers decays sufficiently fast. We apply our results to some independent and identically distributed perturbations of some non-uniformly expanding maps. These imply that the random systems under study tend to a Brownian motion under various scalings.
In this paper we consider the one-dimensional, biased, randomly trapped random walk with infinite-variance trapping times. We prove sufficient conditions for the suitably scaled walk to converge to a transformation of a stable Lévy process. As our main motivation, we apply subsequential versions of our results to biased walks on subcritical Galton–Watson trees conditioned to survive. This confirms the correct order of the fluctuations of the walk around its speed for values of the bias that yield a non-Gaussian regime.
We study, under mild conditions, the weak approximation constructed from a standard Poisson process for a class of Gaussian processes, and establish its sample path moderate deviations. The techniques consist of a good asymptotic exponential approximation in moderate deviations, the Besov–Lèvy modulus embedding, and an exponential martingale technique. Moreover, our results are applied to the weak approximations associated with the moving average of Brownian motion, fractional Brownian motion, and an Ornstein–Uhlenbeck process.
In this paper we study a large system of N servers, each with capacity to process at most C simultaneous jobs; an incoming job is routed to a server if it has the lowest occupancy amongst d (out of N) randomly selected servers. A job that is routed to a server with no vacancy is assumed to be blocked and lost. Such randomized policies are referred to JSQ(d) (Join the Shortest Queue out of d) policies. Under the assumption that jobs arrive according to a Poisson process with rate
$N\lambda^{(N)}$
where
$\lambda^{(N)}=\sigma-\frac{\beta}{\sqrt{N}\,}$
,
$\sigma\in\mathbb{R}_+$
and
$\beta\in\mathbb{R}$
, we establish functional central limit theorems for the fluctuation process in both the transient and stationary regimes when service time distributions are exponential. In particular, we show that the limit is an Ornstein–Uhlenbeck process whose mean and variance depend on the mean field of the considered model. Using this, we obtain approximations to the blocking probabilities for large N, where we can precisely estimate the accuracy of first-order approximations.
Our aim is to find sufficient conditions for weak convergence of stochastic integrals with respect to the state occupation measure of a Markov chain. First, we study properties of the state indicator function and the state occupation measure of a Markov chain. In particular, we establish weak convergence of the state occupation measure under a scaling of the generator matrix. Then, relying on the connection between the state occupation measure and the Dynkin martingale, we provide sufficient conditions for weak convergence of stochastic integrals with respect to the state occupation measure. We apply our results to derive diffusion limits for the Markov-modulated Erlang loss model and the regime-switching Cox–Ingersoll–Ross process.
We study the transient and limiting behavior of a queue with a Pólya arrival process. The Pólya process is interesting because it exhibits path-dependent behavior, e.g. it satisfies a non-ergodic law of large numbers: the average number of arrivals over time [0, t] converges almost surely to a nondegenerate limit as $t \rightarrow \infty$. We establish a heavy-traffic diffusion limit for the $\sum_{i=1}^{n} P_i/GI/1$ queue, with arrivals occurring exogenously according to the superposition of n independent and identically distributed Pólya point processes. That limit yields a tractable approximation for the transient queue-length distribution, because the limiting net input process is a Gaussian Markov process with stationary increments. We also provide insight into the long-run performance of queues with path-dependent arrival processes. We show how Little’s law can be stated in this context, and we provide conditions under which there is stability for a queue with a Pólya arrival process.
Rough volatility is a well-established statistical stylized fact of financial assets. This property has led to the design and analysis of various new rough stochastic volatility models. However, most of these developments have been carried out in the mono-asset case. In this work, we show that some specific multivariate rough volatility models arise naturally from microstructural properties of the joint dynamics of asset prices. To do so, we use Hawkes processes to build microscopic models that accurately reproduce high-frequency cross-asset interactions and investigate their long-term scaling limits. We emphasize the relevance of our approach by providing insights on the role of microscopic features such as momentum and mean-reversion in the multidimensional price formation process. In particular, we recover classical properties of high-dimensional stock correlation matrices.