We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that any isometric immersion of a flat plane domain into ${\mathbb {R}}^3$ is developable provided it enjoys the little Hölder regularity $c^{1,2/3}$. In particular, isometric immersions of local $C^{1,\alpha }$ regularity with $\alpha >2/3$ belong to this class. The proof is based on the existence of a weak notion of second fundamental form for such immersions, the analysis of the Gauss–Codazzi–Mainardi equations in this weak setting, and a parallel result on the very weak solutions to the degenerate Monge–Ampère equation analysed in [M. Lewicka and M. R. Pakzad. Anal. PDE 10 (2017), 695–727.].
This paper is concerned with the study on an open problem of classifying conformally flat minimal Legendrian submanifolds in the $(2n+1)$-dimensional unit sphere $\mathbb {S}^{2n+1}$ admitting a Sasakian structure $(\varphi,\,\xi,\,\eta,\,g)$ for $n\ge 3$, motivated by the classification of minimal Legendrian submanifolds with constant sectional curvature. First of all, we completely classify such Legendrian submanifolds by assuming that the tensor $K:=-\varphi h$ is semi-parallel, which is introduced as a natural extension of $C$-parallel second fundamental form $h$. Secondly, such submanifolds have also been determined under the condition that the Ricci tensor is semi-parallel, generalizing the Einstein condition. Finally, as direct consequences, new characterizations of the Calabi torus are presented.
We give a sharp estimate for the first eigenvalue of the Schrödinger operator $L:=-\Delta -\sigma $ which is defined on the closed minimal submanifold $M^{n}$ in the unit sphere $\mathbb {S}^{n+m}$, where $\sigma $ is the square norm of the second fundamental form.
We prove a stability result of isometric immersions of hypersurfaces in Riemannian manifolds, with respect to $L^p$-perturbations of their fundamental forms: For a manifold ${\mathcal M}^d$ endowed with a reference metric and a reference shape operator, we show that a sequence of immersions $f_n:{\mathcal M}^d\to {\mathcal N}^{d+1}$, whose pullback metrics and shape operators are arbitrary close in $L^p$ to the reference ones, converge to an isometric immersion having the reference shape operator. This result is motivated by elasticity theory and generalizes a previous result [AKM22] to a general target manifold ${\mathcal N}$, removing a constant curvature assumption. The method of proof differs from that in [AKM22]: it extends a Young measure approach that was used in codimension-0 stability results, together with an appropriate relaxation of the energy and a regularity result for immersions satisfying given fundamental forms. In addition, we prove a related quantitative (rather than asymptotic) stability result in the case of Euclidean target, similar to [CMM19] but with no a priori assumed bounds.
In this paper, we obtain one sharp estimate for the length $L(\partial\Sigma)$ of the boundary $\partial\Sigma$ of a capillary minimal surface Σ2 in M3, where M is a compact three-manifolds with strictly convex boundary, assuming Σ has index one. The estimate is in term of the genus of Σ, the number of connected components of $\partial\Sigma$ and the constant contact angle θ. Making an extra assumption on the geometry of M along $\partial M$, we characterize the global geometry of M, which is saturated only by the Euclidean three-balls. For capillary stable CMC surfaces, we also obtain similar results.
We determine all three-dimensional homogeneous and $1$-curvature homogeneous Lorentzian metrics which are critical for a quadratic curvature functional. As a result, we show that any quadratic curvature functional admits different non-Einstein homogeneous critical metrics and that there exist homogeneous metrics which are critical for all quadratic curvature functionals without being Einstein.
This paper develops new techniques for studying smooth dynamical systems in the presence of a Carnot–Carathéodory metric. Principally, we employ the theory of Margulis and Mostow, Métivier, Mitchell, and Pansu on tangent cones to establish resonances between Lyapunov exponents. We apply these results in three different settings. First, we explore rigidity properties of smooth dominated splittings for Anosov diffeomorphisms and flows via associated smooth Carnot–Carathéodory metrics. Second, we obtain local rigidity properties of higher hyperbolic rank metrics in a neighborhood of a locally symmetric one. For the latter application we also prove structural stability of the Brin–Pesin asymptotic holonomy group for frame flows. Finally, we obtain local rigidity properties for uniform lattice actions on the ideal boundary of quaternionic and octonionic symmetric spaces.
Let
$\operatorname {\mathrm {{\rm G}}}(n)$
be equal to either
$\operatorname {\mathrm {{\rm PO}}}(n,1),\operatorname {\mathrm {{\rm PU}}}(n,1)$
or
$\operatorname {\mathrm {\textrm {PSp}}}(n,1)$
and let
$\Gamma \leq \operatorname {\mathrm {{\rm G}}}(n)$
be a uniform lattice. Denote by
$\operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}}$
the hyperbolic space associated to
$\operatorname {\mathrm {{\rm G}}}(n)$
, where
$\operatorname {\mathrm {{\rm K}}}$
is a division algebra over the reals of dimension d. Assume
$d(n-1) \geq 2$
.
In this article we generalise natural maps to measurable cocycles. Given a standard Borel probability
$\Gamma $
-space
$(X,\mu _X)$
, we assume that a measurable cocycle
$\sigma :\Gamma \times X \rightarrow \operatorname {\mathrm {{\rm G}}}(m)$
admits an essentially unique boundary map
$\phi :\partial _\infty \operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}} \times X \rightarrow \partial _\infty \operatorname {\mathrm {\mathbb {H}^m_{{\rm K}}}}$
whose slices
$\phi _x:\operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}} \rightarrow \operatorname {\mathrm {\mathbb {H}^m_{{\rm K}}}}$
are atomless for almost every
$x \in X$
. Then there exists a
$\sigma $
-equivariant measurable map
$F: \operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}} \times X \rightarrow \operatorname {\mathrm {\mathbb {H}^m_{{\rm K}}}}$
whose slices
$F_x:\operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}} \rightarrow \operatorname {\mathrm {\mathbb {H}^m_{{\rm K}}}}$
are differentiable for almost every
$x \in X$
and such that
$\operatorname {\mathrm {\textrm {Jac}}}_a F_x \leq 1$
for every
$a \in \operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}}$
and almost every
$x \in X$
. This allows us to define the natural volume
$\operatorname {\mathrm {\textrm {NV}}}(\sigma )$
of the cocycle
$\sigma $
. This number satisfies the inequality
$\operatorname {\mathrm {\textrm {NV}}}(\sigma ) \leq \operatorname {\mathrm {\textrm {Vol}}}(\Gamma \backslash \operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}})$
. Additionally, the equality holds if and only if
$\sigma $
is cohomologous to the cocycle induced by the standard lattice embedding
$i:\Gamma \rightarrow \operatorname {\mathrm {{\rm G}}}(n) \leq \operatorname {\mathrm {{\rm G}}}(m)$
, modulo possibly a compact subgroup of
$\operatorname {\mathrm {{\rm G}}}(m)$
when
$m>n$
.
Given a continuous map
$f:M \rightarrow N$
between compact hyperbolic manifolds, we also obtain an adaptation of the mapping degree theorem to this context.
In this work, we consider oriented compact manifolds which possess convex mean curvature boundary, positive scalar curvature and admit a map to $\mathbb {D}^{2}\times T^{n}$ with non-zero degree, where $\mathbb {D}^{2}$ is a disc and $T^{n}$ is an $n$-dimensional torus. We prove the validity of an inequality involving a mean of the area and the length of the boundary of immersed discs whose boundaries are homotopically non-trivial curves. We also prove a rigidity result for the equality case when the boundary is strongly totally geodesic. This can be viewed as a partial generalization of a result due to Lucas Ambrózio in (2015, J. Geom. Anal., 25, 1001–1017) to higher dimensions.
We show that almost stable constant mean curvature hypersurfaces contained in a sufficiently small ball of a manifold of bounded sectional curvature are close to geodesic spheres.
In this paper we deal with complete linear Weingarten hypersurfaces immersed into Riemannian space forms. Assuming an Okumura type inequality on the total umbilicity tensor of such hypersurfaces, we prove that either the hypersurface is totally umbilical or it holds an estimate for the norm of the total umbilicity tensor, which is also shown be sharp in the sense that the product of space forms realize them. Our approach is based on a version of the Omori–Yau maximum principle for a suitable Cheng–Yau type operator.
We generalize the higher rank rigidity theorem to a class of Finsler spaces, i.e. Berwald spaces. More precisely, we prove that a complete connected Berwald space of finite volume and bounded non-positive flag curvature with rank at least two whose universal cover is irreducible is a locally symmetric space or a locally Minkowski space.
A Riemannian manifold $M$ has higher hyperbolic rank if every geodesic has a perpendicular Jacobi field making sectional curvature $-1$ with the geodesic. If, in addition, the sectional curvatures of $M$ lie in the interval $[-1,-\frac{1}{4}]$ and $M$ is closed, we show that $M$ is a locally symmetric space of rank one. This partially extends work by Constantine using completely different methods. It is also a partial counterpart to Hamenstädt’s hyperbolic rank rigidity result for sectional curvatures $\leq -1$, and complements well-known results on Euclidean and spherical rank rigidity.
We describe the structure of the Ricci tensor on a locally homogeneous Lorentzian gradient Ricci soliton. In the non-steady case, we show that the soliton is rigid in dimensions 3 and 4. In the steady case we give a complete classification in dimension 3.
We prove ${\it\epsilon}$-closeness of hypersurfaces to a sphere in Euclidean space under the assumption that the traceless second fundamental form is ${\it\delta}$-small compared to the mean curvature. We give the explicit dependence of ${\it\delta}$ on ${\it\epsilon}$ within the class of uniformly convex hypersurfaces with bounded volume.
The paper presents a new proof of the infinitesimal rigidity of convex polyhedra. The proof is based on studying derivatives of the discrete Hilbert–Einstein functional on the space of “warped polyhedra” with a fixed metric on the boundary.
The situation is in a sense dual to using derivatives of the volume in order to prove the Gauss infinitesimal rigidity of convex polyhedra. This latter kind of rigidity is related to the Minkowski theorem on the existence and uniqueness of a polyhedron with prescribed face normals and face areas.
In the spherical space and in the hyperbolic-de Sitter space, there is a perfect duality between the Hilbert–Einstein functional and the volume, as well as between both kinds of rigidity.
We review some of the related work and discuss directions for future research.
The space of Monge–Ampère functions, introduced by J. H. G. Fu, is a space of rather rough functions in which the map $u\,\mapsto \,\text{Det}\,{{\text{D}}^{2}}u$ is well defined and weakly continuous with respect to a natural notion of weak convergence. We prove a rigidity theorem for Lagrangian integral currents that allows us to extend the original definition of Monge–Ampère functions. We also prove that if a Monge–Ampère function $u$ on a bounded set $\Omega \,\subset \,{{\mathbb{R}}^{2}}$ satisfies the equation $\text{Det}\,{{D}^{2}}u\,=\,0$ in a particular weak sense, then the graph of $u$ is a developable surface, and moreover $u$ enjoys somewhat better regularity properties than an arbitrary Monge–Ampère function of 2 variables.
We show that a warped product Mf = nf has higher rank and nonpositive curvature if and only if f is a convex solution of the Monge-Ampère equation. In this case we show that M contains a Euclidean factor.
We prove that simple, thick hyperbolic P-manifolds of dimension at least three exhibit Mostow rigidity. We also prove a quasi-isometry rigidity result for the fundamental groups of simple, thick hyperbolic P-manifolds of dimension at least three. The key tool in the proof of these rigidity results is a strong form of the Jordan separation theorem, for maps from $S^n\rightarrow S^{n+1}$ which are not necessarily injective.