To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this article, we study the $L^p$ Sobolev regularity of the Bergman projection on monomial polyhedra, which are a wide class of bounded singular Reinhardt domains defined as sublevel sets of holomorphic monomials. This work generalizes the previous results of Sobolev regularity of the Bergman projection on various special singular Reinhardt domains.
Let $2\leq p<\infty $ and X be a complex infinite-dimensional Banach space. It is proved that if X is p-uniformly PL-convex, then there is no nontrivial bounded Volterra operator from the weak Hardy space $\mathscr {H}^{\text {weak}}_p(X)$ to the Hardy space $\mathscr {H}^+_p(X)$ of vector-valued Dirichlet series. To obtain this, a Littlewood–Paley inequality for Dirichlet series is established.
The article introduces and studies Hausdorff–Berezin operators on the unit ball in a complex space. These operators are a natural generalization of the Berezin transform. In addition, the class of such operators contains, for example, the invariant Green potential, and some other operators of complex analysis. Sufficient and necessary conditions for boundedness in the space of p – integrable functions with Haar measure (invariant with respect to involutive automorphisms of the unit ball) are given. We also provide results on compactness of Hausdorff–Berezin operators in Lebesgue spaces on the unit ball. Such operators have previously been introduced and studied in the context of the unit disc in the complex plane. Present work is a natural continuation of these studies.
on three important function spaces (i.e., derivative Hardy spaces, weighted Dirichlet spaces, and Bloch type spaces), which is a continuation of the previous works of Mirotin et al. Here, $\mu $ is a positive Radon measure, K is a $\mu $-measurable function on the open unit disk $\mathbb {D}$, and $\sigma _w(z)$ is the classical Möbius transform of $\mathbb {D}$.
Hardy kernels are a useful tool to define integral operators on Hilbertian spaces like $L^2(\mathbb R^+)$ or $H^2(\mathbb C^+)$. These kernels entail an algebraic $L^1$-structure which is used in this work to study the range spaces of those operators as reproducing kernel Hilbert spaces. We obtain their reproducing kernels, which in the $L^2(\mathbb R^+)$ case turn out to be Hardy kernels as well. In the $H^2(\mathbb C^+)$ scenario, the reproducing kernels are given by holomorphic extensions of Hardy kernels. Other results presented here are theorems of Paley–Wiener type, and a connection with one-sided Hilbert transforms.
We obtain sharp $L^{p}$ bounds for oscillatory integral operators with generic homogeneous polynomial phases in several variables. The phases considered in this paper satisfy the rank one condition that is an important notion introduced by Greenleaf, Pramanik, and Tang. Under certain additional assumptions, we can establish sharp damping estimates with critical exponents to prove endpoint $L^{p}$ estimates.
A basic fact about $\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ is that it is closely associated with the multilinear Littlewood–Paley $g_{\unicode[STIX]{x1D706}}^{\ast }$ function. In this paper we first investigate the boundedness of $\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ on products of weighted Lebesgue spaces. Then, the weighted endpoint $L\log L$ type estimate and strong estimate for the commutators of $\mathfrak{T}_{\unicode[STIX]{x1D706},m}$ will be demonstrated.
We characterize those non-negative, measurable functions ψ on [0, 1] and positive, continuous functions ω1 and ω2 on ℝ+ for which the generalized Hardy–Cesàro operator
defines a bounded operator Uψ: L1(ω1) → L1(ω2) This generalizes a result of Xiao [7] to weighted spaces. Furthermore, we extend Uψ to a bounded operator on M(ω1) with range in L1(ω2) ⊕ ℂδ0, where M(ω1) is the weighted space of locally finite, complex Borel measures on ℝ+. Finally, we show that the zero operator is the only weakly compact generalized Hardy–Cesàro operator from L1(ω1) to L1(ω2).
In this paper we determine the ${{L}^{1}}\to {{L}^{1}}$ and ${{L}^{\infty }}\to {{L}^{\infty }}$ norms of an integral operator $\mathcal{N}$ related to the gradient of the solution of Poisson equation in the unit ball with vanishing boundary data in sense of distributions.
We establish the bounds of Marcinkiewicz integrals associated to surfaces of revolution generated by two polynomial mappings on Triebel–Lizorkin spaces and Besov spaces when their integral kernels are given by functions $\unicode[STIX]{x1D6FA}\in H^{1}(\text{S}^{n-1})\cup L(\log ^{+}L)^{1/2}(\text{S}^{n-1})$. Our main results represent improvements as well as natural extensions of many previously known results.
An iteration technique for characterizing boundedness of certain types of multilinear operators is presented, reducing the problem to a corresponding linear-operator case. The method gives a simple proof of a characterization of validity of the weighted bilinear Hardy inequality
for all non-negative f, g on (a, b), for 1 < p1, p2, q < ∞. More equivalent characterizing conditions are presented.
The same technique is applied to various further problems, in particular those involving multilinear integral operators of Hardy type.
The aim of this paper is to provide a comprehensive study of some linear non-local diffusion problems in metric measure spaces. These include, for example, open subsets in ℝN, graphs, manifolds, multi-structures and some fractal sets. For this, we study regularity, compactness, positivity and the spectrum of the stationary non-local operator. We then study the solutions of linear evolution non-local diffusion problems, with emphasis on similarities and differences with the standard heat equation in smooth domains. In particular, we prove weak and strong maximum principles and describe the asymptotic behaviour using spectral methods.
Previous results by the author on the connection between three measures of noncompactness obtained for ${{\mathcal{L}}_{p}}$ are extended to regular spaces of measurable functions. An example is given of the advantages of some cases in comparison with others. Geometric characteristics of regular spaces are determined. New theorems for $\left( k,\,\beta\right)$-boundedness of partially additive operators are proved.
We give some new characterizations for compactness of weighted composition operators $u{{C}_{\varphi }}$ acting on Bloch-type spaces in terms of the power of the components of $\varphi$, where $\varphi$ is a holomorphic self-map of the polydisk ${{\mathbb{D}}^{n}}$, thus generalizing the results obtained by Hyvärinen and Lindström in 2012.
In this paper we consider the existence of a positive solution to boundary-value problems with non-local nonlinear boundary conditions, the archetypical example being −y″(t) = λf(t,y(t)), t ∈ (0, 1), y(0) = H(φ(y)), y(1) = 0. Here, H is a nonlinear function, λ > 0 is a parameter and φ is a linear functional that is realized as a Lebesgue—Stieltjes integral with signed measure. By requiring φ to decompose in a certain way, we show that this problem has at least one positive solution for each λ ∈ (0, λ0), for a number λ0 > 0 that is explicitly computable. We also give a separate result that holds for all λ > 0.
We give a partial answer to a conjecture of Dostanić on the determination of the norm of a class of integral operators induced by the weighted Bergman projection in the upper half plane.
Mixed norm inequalities for directional operators are closely related to the boundedness problems of several important operators in harmonic analysis. In this paper we prove weighted inequalities for some one-dimensional one-sided maximal functions. Then by applying these results, we establish mixed norm inequalities for directional maximal operators which are defined from these one-dimensional maximal functions. We also estimate the constants in these inequalities.
We discuss here the boundedness of the fractional integral operator Iα and its generalized version on generalized nonhomogeneous Morrey spaces. To prove the boundedness of Iα, we employ the boundedness of the so-called maximal fractional integral operator Ia,κ*. In addition, we prove an Olsen-type inequality, which is analogous to that in the case of homogeneous type.
Criteria for selfadjointness of integral operators, including matrix operators, based on our earlier domination results are established. The range of applicability is elucidated by carefully chosen examples, not covered by previously known criteria.
We investigate Riemann--Liouville processes $R_H$, with $H > 0$, and fractional Brownian motions $B_H$, for $0 < H < 1$, and study their small deviation properties in the spaces $L_q([0, 1], \mu)$. Of special interest here are thin (fractal) measures $\mu$, that is, those that are singular with respect to the Lebesgue measure. We describe the behavior of small deviation probabilities by numerical quantities of $\mu$, called mixed entropy numbers, characterizing size and regularity of the underlying measure. For the particularly interesting case of self-similar measures, the asymptotic behavior of the mixed entropy is evaluated explicitly. We also provide two-sided estimates for this quantity in the case of random measures generated by subordinators.
While the upper asymptotic bound for the small deviation probability is proved by purely probabilistic methods, the lower bound is verified by analytic tools concerning entropy and Kolmogorov numbers of Riemann--Liouville operators.