We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
First we give a counterexample showing that recent results on separate order continuity of Arens extensions of multilinear operators cannot be improved to get separate order continuity on the product of the whole of the biduals. Then we establish conditions on the operators and/or on the underlying Riesz spaces/Banach lattices so that the extensions are order continuous on the product of the whole biduals. We also prove that all Arens extensions of any regular multilinear operator are order continuous in at least one variable and we study when Arens extensions of regular homogeneous polynomials on a Banach lattice $E$ are order continuous on $E^{**}$.
where \[{\text{c}}(k,X)\] stands for the best constant \[C > 0\] such that \[\mathop P\limits^ \vee \leqslant CP\] for every k-homogeneous polynomial \[P \in \mathcal{P}{(^k}X)\]. We show that if X is a finite dimensional complex space then \[{\text{c}}(X) = 1\]. We derive some consequences of this fact regarding the convergence of analytic functions on such spaces.
The result is no longer true in the real setting. Here we relate this constant with the so-called Bochnak’s complexification procedure.
We also study some other properties connected with polarization. Namely, we provide necessary conditions related to the geometry of X for \[c(2,X) = 1\] to hold. Additionally we link polarization constants with certain estimates of the nuclear norm of the product of polynomials.
In the spectrum of the algebra of symmetric analytic functions of bounded type on ℓp, 1 ≤ p < +∞, and along the same lines as the general non-symmetric case, we define and study a convolution operation and give a formula for the ‘radius’ function. It is also proved that the algebra of analytic functions of bounded type on ℓ1 is isometrically isomorphic to an algebra of symmetric analytic functions on a polydisc of ℓ1. We also consider the existence of algebraic projections between algebras of symmetric polynomials and the corresponding subspace of subsymmetric polynomials.
The main result in this paper is a representation theorem for homogeneous orthogonally additive polynomials on Banach lattices. The representation theorem is used to study the linear span of the set of zeros of homogeneous real-valued orthogonally additive polynomials. It is shown that in certain lattices every element can be represented as the sum of two or three zeros or, at least, can be approximated by such sums. It is also indicated how these results can be used to study weak topologies induced by orthogonally additive polynomials on Banach lattices.
Given a Banach space $E$ and positive integers $k$ and $l$ we investigate the smallest constant $C$ that satisfies $\|P\|\hskip1pt\|Q\|\le C\|PQ\|$ for all $k$-homogeneous polynomials $P$ and $l$-homogeneous polynomials $Q$ on $E$. Our estimates are obtained using multilinear maps, the principle of local reflexivity and ideas from the geometry of Banach spaces (type and uniform convexity). We also examine the analogous problem for general polynomials on Banach spaces.
We show that there is a unique norm-preserving extension for norm-attaining 2-homogeneous polynomials on the predual $d_*(w,1)$ of a complex Lorentz sequence space $d(w,1)$ to $d^*(w,1)$, but there is no unique norm-preserving extension from $\mathcal{P}(^nd_*(w,1))$ to $\mathcal{P}(^nd^*(w,1))$ for $n\geq3$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.