We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we study the existence of travelling wave solutions and the spreading speed for the solutions of an age-structured epidemic model with nonlocal diffusion. Our proofs make use of the comparison principles both to construct suitable sub/super-solutions and to prove the regularity of travelling wave solutions.
In this paper we state some sharp maximum principle, i.e. we characterize the geometry of the sets of minima for supersolutions of equations involving the $k$-th fractional truncated Laplacian or the $k$-th fractional eigenvalue which are fully nonlinear integral operators whose nonlocality is somehow $k$-dimensional.
Global weak solutions to the continuous Smoluchowski coagulation equation (SCE) are constructed for coagulation kernels featuring an algebraic singularity for small volumes and growing linearly for large volumes, thereby extending previous results obtained in Norris (1999) and Cueto Camejo & Warnecke (2015). In particular, linear growth at infinity of the coagulation kernel is included and the initial condition may have an infinite second moment. Furthermore, all weak solutions (in a suitable sense) including the ones constructed herein are shown to be mass-conserving, a property which was proved in Norris (1999) under stronger assumptions. The existence proof relies on a weak compactness method in L1 and a by-product of the analysis is that both conservative and non-conservative approximations to the SCE lead to weak solutions which are then mass-conserving.
We extend the full wavefield modeling with forward scattering theory and Volterra Renormalization to a vertically varying two-parameter (velocity and density) acoustic medium. The forward scattering series, derived by applying Born-Neumann iterative procedure to the Lippmann-Schwinger equation (LSE), is a well known tool for modeling and imaging. However, it has limited convergence properties depending on the strength of contrast between the actual and reference medium or the angle of incidence of a plane wave component. Here, we introduce the Volterra renormalization technique to the LSE. The renormalized LSE and related Neumann series are absolutely convergent for any strength of perturbation and any incidence angle. The renormalized LSE can further be separated into two sub-Volterra type integral equations, which are then solved noniteratively. We apply the approach to velocity-only, density-only, and both velocity and density perturbations. We demonstrate that this Volterra Renormalization modeling is a promising and efficient method. In addition, it can also provide insight for developing a scattering theory-based direct inversion method.
A new semilocal convergence result for the Picard method is presented, where the main required condition in the contraction mapping principle is relaxed.
In this paper, some new results concerning the existence and uniqueness of nontrivial solutions to nonlinear Volterra integral equations with convolution kernels are presented.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.