We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We enrich the class of power-constructible functions, introduced in [CCRS23], to a class $\mathcal {C}^{\mathcal {M,F}}$ of algebras of functions which contains all complex powers of subanalytic functions and their parametric Mellin and Fourier transforms, and which is stable under parametric integration. By describing a set of generators of a special prepared form, we deduce information on the asymptotics and on the loci of integrability of the functions of $\mathcal {C}^{\mathcal {M,F}}$. We furthermore identify a subclass $\mathcal {C}^{\mathbb {C},\mathcal {F}}$ of $\mathcal {C}^{\mathcal {M,F}}$, which is the smallest class containing all power-constructible functions and stable under parametric Fourier transforms and right-composition with subanalytic maps. This class is also stable under parametric integration, under taking pointwise and $\text {L}^p$-limits and under parametric Fourier-Plancherel transforms. Finally, we give a full asymptotic expansion in the power-logarithmic scale, uniformly in the parameters, for functions in $\mathcal {C}^{\mathbb {C},\mathcal {F}}$.
Let $L=-\Delta +V$ be a Schrödinger operator in ${\mathbb R}^n$ with $n\geq 3$, where $\Delta $ is the Laplace operator denoted by $\Delta =\sum ^{n}_{i=1}({\partial ^{2}}/{\partial x_{i}^{2}})$ and the nonnegative potential V belongs to the reverse Hölder class $(RH)_{q}$ with $q>n/2$. For $\alpha \in (0,1)$, we define the operator
where $\{e^{-tL^\alpha } \}_{t>0}$ is the fractional heat semigroup of the operator L, $\{v_j\}_{j\in \mathbb Z}$ is a bounded real sequence and $\{a_j\}_{j\in \mathbb Z}$ is an increasing real sequence.
We investigate the boundedness of the operator $T_N^{L^{\alpha }}$ and the related maximal operator $T^*_{L^{\alpha }}f(x):=\sup _N \vert T_N^{L^{\alpha }} f(x)\vert $ on the spaces $L^{p}(\mathbb {R}^{n})$ and $BMO_{L}(\mathbb {R}^{n})$, respectively. As extensions of $L^{p}(\mathbb {R}^{n})$, the boundedness of the operators $T_N^{L^{\alpha }}$ and $T^*_{L^{\alpha }}$ on the Morrey space $L^{\rho ,\theta }_{p,\kappa }(\mathbb {R}^{n})$ and the weak Morrey space $WL^{\rho ,\theta }_{1,\kappa }(\mathbb {R}^{n})$ has also been proved.
We present a new proof of the compactness of bilinear paraproducts with CMO symbols. By drawing an analogy to compact linear operators, we first explore further properties of compact bilinear operators on Banach spaces and present examples. We then prove compactness of bilinear paraproducts with CMO symbols by combining one of the properties of compact bilinear operators thus obtained with vanishing Carleson measure estimates and interpolation of bilinear compactness.
We introduce a class of Falconer distance problems, which we call of restricted type, lying between the classical version and its pinned variant. Prototypical restricted distance sets are the diagonal distance sets, k-point configuration sets given by
for a compact $E\subset \mathbb {R}^d$ and $k\ge 3$. We show that $\Delta ^{\mathrm{diag}}(E)$ has non-empty interior if the Hausdorff dimension of E satisfies (0.1)
We prove an extension of this to $C^\omega $ Riemannian metrics g close to the product of Euclidean metrics. For product metrics, this follows from known results on pinned distance sets, but to obtain a result for general perturbations g, we present a sequence of proofs of partial results, leading up to the proof of the full result, which is based on estimates for multilinear Fourier integral operators.
For decreasing sequences $\{t_{n}\}_{n=1}^{\infty }$ converging to zero and initial data $f\in H^s(\mathbb {R}^N)$, $N\geq 2$, we consider the almost everywhere convergence problem for sequences of Schrödinger means ${\rm e}^{it_{n}\Delta }f$, which was proposed by Sjölin, and was open until recently. In this paper, we prove that if $\{t_n\}_{n=1}^{\infty }$ belongs to Lorentz space ${\ell }^{r,\infty }(\mathbb {N})$, then the a.e. convergence results hold for $s>\min \{\frac {r}{\frac {N+1}{N}r+1},\,\frac {N}{2(N+1)}\}$. Inspired by the work of Lucà-Rogers, we construct a counterexample to show that our a.e. convergence results are sharp (up to endpoints). Our results imply that when $0< r<\frac {N}{N+1}$, there is a gain over the a.e. convergence result from Du-Guth-Li and Du-Zhang, but not when $r\geq \frac {N}{N+1}$, even though we are in the discrete case. Our approach can also be applied to get the a.e. convergence results for the fractional Schrödinger means and nonelliptic Schrödinger means.
We establish new local and global estimates for evolutionary partial differential equations in classical Banach and quasi-Banach spaces that appear most frequently in the theory of partial differential equations. More specifically, we obtain optimal (local in time) estimates for the solution to the Cauchy problem for variable-coefficient evolutionary partial differential equations. The estimates are achieved by introducing the notions of Schrödinger and general oscillatory integral operators with inhomogeneous phase functions and prove sharp local and global regularity results for these in Besov–Lipschitz and Triebel–Lizorkin spaces.
We study $L^p$-Sobolev regularity estimates for the restricted X-ray transforms generated by nondegenerate curves. Making use of the inductive strategy in the recent work by the authors, we establish the sharp $L^p$-regularity estimates for the restricted X-ray transforms in $\mathbb {R}^{d+1}$, $d\ge 3$. This extends the result due to Pramanik and Seeger in $\mathbb {R}^3$.
In this paper, we study the behaviours of the commutators $[\vec b,\,T]$ generated by multilinear Calderón–Zygmund operators $T$ with $\vec b=(b_1,\,\ldots,\,b_m)\in L_{\rm loc}(\mathbb {R}^n)$ on weighted Hardy spaces. We show that for some $p_i\in (0,\,1]$ with $1/p=1/p_1+\cdots +1/p_m$, $\omega \in A_\infty$ and $b_i\in \mathcal {BMO}_{\omega,p_i}$ ($1\le i\le m$), which are a class of non-trivial subspaces of ${\rm BMO}$, the commutators $[\vec b,\,T]$ are bounded from $H^{p_1}(\omega )\times \cdots \times H^{p_m}(\omega )$ to $L^p(\omega )$. Meanwhile, we also establish the corresponding results for a class of maximal truncated multilinear commutators $T_{\vec b}^*$.
Let $\mu$ be a Radon measure on the nth Heisenberg group ${\mathbb{H}}^n$. In this note we prove that if the $(2n+1)$-dimensional (Heisenberg) Riesz transform on ${\mathbb{H}}^n$ is $L^2(\mu)$-bounded, and if $\mu(F)=0$ for all Borel sets with ${\text{dim}}_H(F)\leq 2$, then $\mu$ must have $(2n+1)$-polynomial growth. This is the Heisenberg counterpart of a result of Guy David from [Dav91].
We prove sharp smoothing properties of the averaging operator defined by convolution with a measure on a smooth nondegenerate curve
$\gamma $
in
$\mathbb R^d$
,
$d\ge 3$
. Despite the simple geometric structure of such curves, the sharp smoothing estimates have remained largely unknown except for those in low dimensions. Devising a novel inductive strategy, we obtain the optimal
$L^p$
Sobolev regularity estimates, which settle the conjecture raised by Beltran–Guo–Hickman–Seeger [1]. Besides, we show the sharp local smoothing estimates on a range of p for every
$d\ge 3$
. As a result, we establish, for the first time, nontrivial
$L^p$
boundedness of the maximal average over dilations of
$\gamma $
for
$d\ge 4$
.
We recall that $w\in C_{p}^+$ if there exist $\varepsilon >0$ and $C>0$ such that for any $a< b< c$ with $c-b< b-a$ and any measurable set $E\subset (a,b)$, the following holds
This condition was introduced by Riveros and de la Torre [33] as a one-sided counterpart of the $C_{p}$ condition studied first by Muckenhoupt and Sawyer [30, 34]. In this paper we show that given $1< p< q<\infty$ if $w\in C_{q}^+$ then
and conversely if such an inequality holds, then $w\in C_{p}^+$. This result is the one-sided counterpart of Yabuta's main result in [37]. Combining this estimate with known pointwise estimates for $M^{\sharp,+}$ in the literature we recover and extend the result for maximal one-sided singular integrals due to Riveros and de la Torre [33] obtaining counterparts a number of operators.
Let $\sigma \in (0,\,2)$, $\chi ^{(\sigma )}(y):={\mathbf 1}_{\sigma \in (1,2)}+{\mathbf 1}_{\sigma =1} {\mathbf 1}_{y\in B(\mathbf {0},\,1)}$, where $\mathbf {0}$ denotes the origin of $\mathbb {R}^n$, and $a$ be a non-negative and bounded measurable function on $\mathbb {R}^n$. In this paper, we obtain the boundedness of the non-local elliptic operator
from the Sobolev space based on $\mathrm {BMO}(\mathbb {R}^n)\cap (\bigcup _{p\in (1,\infty )}L^p(\mathbb {R}^n))$ to the space $\mathrm {BMO}(\mathbb {R}^n)$, and from the Sobolev space based on the Hardy space $H^1(\mathbb {R}^n)$ to $H^1(\mathbb {R}^n)$. Moreover, for any $\lambda \in (0,\,\infty )$, we also obtain the unique solvability of the non-local elliptic equation $Lu-\lambda u=f$ in $\mathbb {R}^n$, with $f\in \mathrm {BMO}(\mathbb {R}^n)\cap (\bigcup _{p\in (1,\infty )}L^p(\mathbb {R}^n))$ or $H^1(\mathbb {R}^n)$, in the Sobolev space based on $\mathrm {BMO}(\mathbb {R}^n)$ or $H^1(\mathbb {R}^n)$. The boundedness and unique solvability results given in this paper are further devolvement for the corresponding results in the scale of the Lebesgue space $L^p(\mathbb {R}^n)$ with $p\in (1,\,\infty )$, established by H. Dong and D. Kim [J. Funct. Anal. 262 (2012), 1166–1199], in the endpoint cases of $p=1$ and $p=\infty$.
The aim of this paper is to establish the boundedness of fractional type Marcinkiewicz integral
$\mathcal {M}_{\iota ,\rho ,m}$
and its commutator
$\mathcal {M}_{\iota ,\rho ,m,b}$
on generalized Morrey spaces and on Morrey spaces over nonhomogeneous metric measure spaces which satisfy the upper doubling and geometrically doubling conditions. Under the assumption that the dominating function
$\lambda $
satisfies
$\epsilon $
-weak reverse doubling condition, the author proves that
$\mathcal {M}_{\iota ,\rho ,m}$
is bounded on generalized Morrey space
$L^{p,\phi }(\mu )$
and on Morrey space
$M^{p}_{q}(\mu )$
. Furthermore, the boundedness of the commutator
$\mathcal {M}_{\iota ,\rho ,m,b}$
generated by
$\mathcal {M}_{\iota ,\rho ,m}$
and regularized
$\mathrm {BMO}$
space with discrete coefficient (=
$\widetilde {\mathrm {RBMO}}(\mu )$
) on space
$L^{p,\phi }(\mu )$
and on space
$M^{p}_{q}(\mu )$
is also obtained.
In this paper we study boundedness and compactness characterizations of the commutators of Cauchy type integrals on bounded strongly pseudoconvex domains D in
$\mathbb C^{n}$
with boundaries
$bD$
satisfying the minimum regularity condition
$C^{2}$
, based on the recent results of Lanzani–Stein and Duong et al. We point out that in this setting the Cauchy type integral is the sum of the essential part which is a Calderón–Zygmund operator and a remainder which is no longer a Calderón–Zygmund operator. We show that the commutator is bounded on the weighted Morrey space
$L_{v}^{p,\kappa }(bD)$
(
$v\in A_{p}, 1<p<\infty $
) if and only if b is in the BMO space on
$bD$
. Moreover, the commutator is compact on the weighted Morrey space
$L_{v}^{p,\kappa }(bD)$
(
$v\in A_{p}, 1<p<\infty $
) if and only if b is in the VMO space on
$bD$
.
We obtain a sparse domination principle for an arbitrary family of functions
$f(x,Q)$
, where
$x\in {\mathbb R}^{n}$
and Q is a cube in
${\mathbb R}^{n}$
. When applied to operators, this result recovers our recent works [37, 39]. On the other hand, our sparse domination principle can be also applied to non-operator objects. In particular, we show applications to generalised Poincaré–Sobolev inequalities, tent spaces and general dyadic sums. Moreover, the flexibility of our result allows us to treat operators that are not localisable in the sense of [39], as we will demonstrate in an application to vector-valued square functions.
This paper establishes the mapping properties of pseudo-differential operators and the Fourier integral operators on the weighted Morrey spaces with variable exponents and the weighted Triebel–Lizorkin–Morrey spaces with variable exponents. We obtain these results by extending the extrapolation theory to the weighted Morrey spaces with variable exponents. This extension also gives the mapping properties of Calderón–Zygmund operators on the weighted Hardy–Morrey spaces with variable exponents and the wavelet characterizations of the weighted Hardy–Morrey spaces with variable exponents.
We prove
$L^{p}$
-boundedness of oscillating multipliers on symmetric spaces of noncompact type of arbitrary rank, as well as on a wide class of locally symmetric spaces.
Several results in the existing literature establish Euclidean density theorems of the following strong type. These results claim that every set of positive upper Banach density in the Euclidean space of an appropriate dimension contains isometric copies of all sufficiently large elements of a prescribed family of finite point configurations. So far, all results of this type discussed linear isotropic dilates of a fixed point configuration. In this paper, we initiate the study of analogous density theorems for families of point configurations generated by anisotropic dilations, i.e., families with power-type dependence on a single parameter interpreted as their size. More specifically, we prove nonisotropic power-type generalizations of a result by Bourgain on vertices of a simplex, a result by Lyall and Magyar on vertices of a rectangular box, and a result on distance trees, which is a particular case of the treatise of distance graphs by Lyall and Magyar. Another source of motivation for this paper is providing additional evidence for the versatility of the approach stemming from the work of Cook, Magyar, and Pramanik and its modification used recently by Durcik and the present author. Finally, yet another purpose of this paper is to single out anisotropic multilinear singular integral operators associated with the above combinatorial problems, as they are interesting on their own.
Let $S \subset \mathbb {R}^{n}$ be a smooth compact hypersurface with a strictly positive second fundamental form, $E$ be the Fourier extension operator on $S$, and $X$ be a Lebesgue measurable subset of $\mathbb {R}^{n}$. If $X$ contains a ball of each radius, then the problem of determining the range of exponents $(p,q)$ for which the estimate $\| Ef \|_{L^{q}(X)} \lesssim \| f \|_{L^{p}(S)}$ holds is equivalent to the restriction conjecture. In this paper, we study the estimate under the following assumption on the set $X$: there is a number $0 < \alpha \leq n$ such that $|X \cap B_R| \lesssim R^{\alpha }$ for all balls $B_R$ in $\mathbb {R}^{n}$ of radius $R \geq 1$. On the left-hand side of this estimate, we are integrating the function $|Ef(x)|^{q}$ against the measure $\chi _X \,{\textrm {d}}x$. Our approach consists of replacing the characteristic function $\chi _X$ of $X$ by an appropriate weight function $H$, and studying the resulting estimate in three different regimes: small values of $\alpha$, intermediate values of $\alpha$, and large values of $\alpha$. In the first regime, we establish the estimate by using already available methods. In the second regime, we prove a weighted Hölder-type inequality that holds for general non-negative Lebesgue measurable functions on $\mathbb {R}^{n}$ and combine it with the result from the first regime. In the third regime, we borrow a recent fractal Fourier restriction theorem of Du and Zhang and combine it with the result from the second regime. In the opposite direction, the results of this paper improve on the Du–Zhang theorem in the range $0 < \alpha < n/2$.