We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this article is to study the asymptotic behaviour of non-autonomous stochastic lattice systems. We first show the existence and uniqueness of a pullback measure attractor. Moreover, when deterministic external forcing terms are periodic in time, we show the pullback measure attractors are periodic. We then study the upper semicontinuity of pullback measure attractors as the noise intensity goes to zero. Pullback asymptotic compact for a family of probability measures with respect to probability distributions of the solutions is demonstrated by using uniform a priori estimates for far-field values of solutions.
For a $C^1$ non-conformal repeller, this paper proves that there exists an ergodic measure of full Carathéodory singular dimension. For an average conformal hyperbolic set of a $C^1$ diffeomorphism, this paper constructs a Borel probability measure (with support strictly inside the repeller) of full Hausdorff dimension. If the average conformal hyperbolic set is of a $C^{1+\alpha }$ diffeomorphism, this paper shows that there exists an ergodic measure of maximal dimension.
The Kuramoto–Sivashinsky equation is a prototypical chaotic nonlinear partial differential equation (PDE) in which the size of the spatial domain plays the role of a bifurcation parameter. We investigate the changing dynamics of the Kuramoto–Sivashinsky PDE by calculating the Lyapunov spectra over a large range of domain sizes. Our comprehensive computation and analysis of the Lyapunov exponents and the associated Kaplan–Yorke dimension provides new insights into the chaotic dynamics of the Kuramoto–Sivashinsky PDE, and the transition to its one-dimensional turbulence.
In this paper the existence and uniqueness of weak and strong solutions for a non-autonomous non-local reaction–diffusion equation is proved. Furthermore, the existence of minimal pullback attractors in the L2-norm in the frameworks of universes of fixed bounded sets and those given by a tempered growth condition is established, along with some relationships between them. Finally, we prove the existence of minimal pullback attractors in the H1-norm and study relationships among these new families and those given previously in the L2 context. We also present new results in the autonomous framework that ensure the existence of global compact attractors as a particular case.
Considered here is the pullback attractor of the process associated with the first initial boundary value problem for the non-autonomous semilinear degenerate parabolic equation
in a bounded domain Ω in ℝN (N≥2). We prove the regularity in the space L2p−2(Ω)∩ $D_0^2(\Omega,\sigma)$, and estimate the fractal dimension of the pullback attractor in L2(Ω).
The pullback asymptotic behavior of the solutions for 2D Nonau-tonomous G-Navier-Stokes equations is studied, and the existence of its L2-pullback attractors on some bounded domains with Dirichlet boundary conditions is investigated by using the measure of noncompactness. Then the estimation of the fractal dimensions for the 2D G-Navier-Stokes equations is given.
The existence of the global attractor of a damped forced Hirota equation in the phase space ${{H}^{1}}\left( \mathbb{R} \right)$ is proved. The main idea is to establish the so-called asymptotic compactness property of the solution operator by energy equation approach.
We consider a simple model to describe the widths of the mode-locked intervals for the critical circle map. By using two different partitions of the rational numbers based on Farey series and Farey tree levels, respectively, we calculate the free energy analytically at selected points for each partition. It emerges that the result of the calculation depends on the method of partition. An implication of this finding is that the generalized dimensions Dq are different for the two types of partition except when q=0; that is, only the Hausdorff dimension is the same in both cases.
In this paper, we study an upper bound of the fractal dimension of the exponential attractor for the chemotaxis–growth system in a two-dimensional domain. We apply the technique given by Eden, Foias, Nicolaenko and Temam. Our results show that the bound is estimated by polynomial order with respect to the chemotactic coefficient in the equation similar to our preceding papers.
The weighted energy theory for Navier-Stokes equations in 2D strips is developed. Based on this theory, the existence of a solution in the uniformly local phase space (without any spatial decaying assumptions), its uniqueness and the existence of a global attractor are verified. In particular, this phase space contains the 2D Poiseuille flows.
The equi-attraction properties concerning the global attractors $\a_\lam$ of dynamical systems $S_\lam(t)$ with parameter $\lam\in\Lam$, where $\Lam$ is a compact metric space, are investigated. In particular, under appropriate conditions, it is shown that the equi-attraction of the family $\{\a_\lam\}$ is equivalent to the continuity of $\a_\lam$ in $\lam$ with respect to the Hausdorff distance.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.