Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T20:04:37.266Z Has data issue: false hasContentIssue false

Time-dependent attractors for non-autonomous non-local reaction–diffusion equations

Published online by Cambridge University Press:  22 April 2018

Tomás Caraballo
Affiliation:
Departamento Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, c/ Tarfia s/n, 41012 Sevilla, Spain (caraball@us.es; mhc@us.es; pmr@us.es)
Marta Herrera-Cobos
Affiliation:
Departamento Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, c/ Tarfia s/n, 41012 Sevilla, Spain (caraball@us.es; mhc@us.es; pmr@us.es)
Pedro Marín-Rubio
Affiliation:
Departamento Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, c/ Tarfia s/n, 41012 Sevilla, Spain (caraball@us.es; mhc@us.es; pmr@us.es)

Abstract

In this paper the existence and uniqueness of weak and strong solutions for a non-autonomous non-local reaction–diffusion equation is proved. Furthermore, the existence of minimal pullback attractors in the L2-norm in the frameworks of universes of fixed bounded sets and those given by a tempered growth condition is established, along with some relationships between them. Finally, we prove the existence of minimal pullback attractors in the H1-norm and study relationships among these new families and those given previously in the L2 context. We also present new results in the autonomous framework that ensure the existence of global compact attractors as a particular case.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Dedicated to Karin Wahl, in memoriam