We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
which describes the dynamics of pseudorelativistic boson stars in the mean-field limit. We study the travelling waves of the form $\psi (t,x)=e^{it\mu }\varphi _{c}(x-vt)$, where $v\in \mathbb {R}^3$ denotes the travelling velocity. We prove that $\varphi _{c}$ converges strongly to the minimiser $\varphi _{\infty }$ of the limit energy $E_{\infty }(N)$ in $H^1(\mathbb {R}^3)$ as the light speed $c\to \infty $, where $E_{\infty }(N)$ is the corresponding energy for the limit equation
Since the operator $-\Delta $ is the classical kinetic operator, we call this the nonrelativistic limit. We prove the existence of the minimiser for the limit energy $E_{\infty }(N)$ by using concentration-compactness arguments.
Recently, we analysed spontaneous symmetry breaking (SSB) of solitons in linearly coupled dual-core waveguides with fractional diffraction and cubic nonlinearity. In a practical context, the system can serve as a model for optical waveguides with the fractional diffraction or Bose–Einstein condensate of particles with Lévy index $\alpha <2$. In an earlier study, the SSB in the fractional coupler was identified as the bifurcation of subcritical type, becoming extremely subcritical in the limit of $\alpha \rightarrow 1$. There, the moving solitons and collisions between them at low speeds were also explored. In the present paper, we present new numerical results for fast solitons demonstrating restoration of symmetry in post-collision dynamics.
We show a result on propagation of the anisotropic Gabor wave front set for linear operators with a tempered distribution Schwartz kernel. The anisotropic Gabor wave front set is parametrized by a positive parameter relating the space and frequency variables. The anisotropic Gabor wave front set of the Schwartz kernel is assumed to satisfy a graph type criterion. The result is applied to a class of evolution equations that generalizes the Schrödinger equation for the free particle. The Laplacian is replaced by any partial differential operator with constant coefficients, real symbol and order at least two.
We study the multiplicity and concentration of complex-valued solutions for a fractional magnetic Schrödinger equation involving a scalar continuous electric potential satisfying a local condition and a continuous nonlinearity with subcritical growth. The main results are obtained by applying a penalization technique, generalized Nehari manifold method and Ljusternik–Schnirelman theory. We also prove a Kato's inequality for the fractional magnetic Laplacian which we believe to be useful in the study of other fractional magnetic problems.
The main result is that the ellipticity and the Fredholm property of a
$\Psi $
DO acting on Sobolev spaces in the Weyl-Hörmander calculus are equivalent when the Hörmander metric is geodesically temperate and its associated Planck function vanishes at infinity. The proof is essentially related to the following result that we prove for geodesically temperate Hörmander metrics: If
$\lambda \mapsto a_{\lambda }\in S(1,g)$
is a
$\mathcal {C}^N$
,
$0\leq N\leq \infty $
, map such that each
$a_{\lambda }^w$
is invertible on
$L^2$
, then the mapping
$\lambda \mapsto b_{\lambda }\in S(1,g)$
, where
$b_{\lambda }^w$
is the inverse of
$a_{\lambda }^w$
, is again of class
$\mathcal {C}^N$
. Additionally, assuming also the strong uncertainty principle for the metric, we obtain a Fedosov-Hörmander formula for the index of an elliptic operator. At the very end, we give an example to illustrate our main result.
where $\tau :{\open R}^n\to {\open R}^n$ is a general function. In particular, for the linear choices $\tau (x)=0$, $\tau (x)=x$ and $\tau (x)={x}/{2}$ this covers the well-known Kohn–Nirenberg, anti-Kohn–Nirenberg and Weyl quantizations, respectively. Quantizations of such type appear naturally in the analysis on nilpotent Lie groups for polynomial functions τ and here we investigate the corresponding calculus in the model case of ${\open R}^n$. We also give examples of nonlinear τ appearing on the polarized and non-polarized Heisenberg groups.
This paper is devoted to the study of fractional Schrödinger-Poisson type equations with magnetic field of the type
$$\varepsilon^{2s}(-\Delta)_{A/\varepsilon}^{s}u + V(x)u + {\rm e}^{-2t}(\vert x \vert^{2t-3} \ast \vert u\vert ^{2})u = f(\vert u \vert^{2})u \quad \hbox{in} \ \open{R}^{3},$$
where ε > 0 is a parameter, s, t ∈ (0, 1) are such that 2s+2t>3, A:ℝ3 → ℝ3 is a smooth magnetic potential, (−Δ)As is the fractional magnetic Laplacian, V:ℝ3 → ℝ is a continuous electric potential and f:ℝ → ℝ is a C1 subcritical nonlinear term. Using variational methods, we obtain the existence, multiplicity and concentration of nontrivial solutions for e > 0 small enough.
We investigate the decay for |x|→∞ of weak Sobolev-type solutions of semilinear nonlocal equations Pu = F(u). We consider the case when P = p(D) is an elliptic Fourier multiplier with polyhomogeneous symbol p(ξ), and we derive algebraic decay estimates in terms of weighted Sobolev norms. Our basic example is the celebrated Benjamin–Ono equation
for internal solitary waves of deep stratified fluids. Their profile presents algebraic decay, in strong contrast with the exponential decay for KdV shallow water waves.
In this paper we prove weighted norm inequalities with weights in the ${{A}_{p}}$ classes, for pseudodifferential operators with symbols in the class $S_{\rho ,\delta }^{n(\rho -1)}$ that fall outside the scope of Calderón–Zygmund theory. This is accomplished by controlling the sharp function of the pseudodifferential operator by Hardy–Littlewood type maximal functions. Our weighted norm inequalities also yield ${{L}^{p}}$ boundedness of commutators of functions of bounded mean oscillation with a wide class of operators in $\text{OPS}_{\rho ,\delta }^{m}$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.