We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Well-posedness in time-weighted spaces of certain quasilinear (and semilinear) parabolic evolution equations $u'=A(u)u+f(u)$ is established. The focus lies on the case of strict inclusions $\mathrm{dom}(f)\subsetneq \mathrm{dom}(A)$ of the domains of the nonlinearities $u\mapsto f(u)$ and $u\mapsto A(u)$. Based on regularizing effects of parabolic equations it is shown that a semiflow is generated in intermediate spaces. In applications this allows one to derive global existence from weaker a priori estimates. The result is illustrated by examples of chemotaxis systems.
We generalize the one-dimensional population model of Anguige & Schmeiser [1] reflecting the cell-to-cell adhesion and volume filling and classify the resulting equation into the six types. Among these types, we fix one that yields a class of advection-diffusion equations of forward-backward-forward type and prove the existence of infinitely many global-in-time weak solutions to the initial-Dirichlet boundary value problem when the maximum value of an initial population density exceeds a certain threshold. Such solutions are extracted from the method of convex integration by Müller & Šverák [12]; they exhibit fine-scale density mixtures over a finite time interval, then become smooth and identical, and decay exponentially and uniformly to zero as time approaches infinity. TE check: Please check the reference citation in abstract.
We study curve-shortening flow for twisted curves in $\mathbb {R}^3$ (that is, curves with nowhere vanishing curvature $\kappa $ and torsion $\tau $) and define a notion of torsion-curvature entropy. Using this functional, we show that either the curve develops an inflection point or the eventual singularity is highly irregular (and likely impossible). In particular, it must be a Type-II singularity which admits sequences along which ${\tau }/{\kappa ^2} \to \infty $. This contrasts strongly with Altschuler’s planarity theorem, which shows that ${\tau }/{\kappa } \to 0$ along any essential blow-up sequence.
We prove a result on the existence and uniqueness of the solution of a new feature-preserving nonlinear nonlocal diffusion equation for signal denoising for the one-dimensional case. The partial differential equation is based on a novel diffusivity coefficient that uses a nonlocal automatically detected parameter related to the local bounded variation and the local oscillating pattern of the noisy input signal.
In this paper, we study the initial-boundary value problem of a repulsion Keller–Segel system with a logarithmic sensitivity modelling the reinforced random walk. By establishing an energy–dissipation identity, we prove the existence of classical solutions in two dimensions as well as existence of weak solutions in the three-dimensional setting. Moreover, it is shown that the weak solutions enjoy an eventual regularity property, i.e., it becomes regular after certain time T > 0. An exponential convergence rate towards the spatially homogeneous steady states is obtained as well. We adopt a new approach developed recently by the author to study the eventual regularity. The argument is based on observation of the exponential stability of constant solutions in scaling-invariant spaces together with certain dissipative property of the global solutions in the same spaces.
This paper investigates regularity in Lorentz spaces for weak solutions of a class of divergence form quasi-linear parabolic equations with singular divergence-free drifts. In this class of equations, the principal terms are vector field functions that are measurable in ($x,t$)-variable, and nonlinearly dependent on both unknown solutions and their gradients. Interior, local boundary, and global regularity estimates in Lorentz spaces for gradients of weak solutions are established assuming that the solutions are in BMO space, the John–Nirenberg space. The results are even new when the drifts are identically zero, because they do not require solutions to be bounded as in the available literature. In the linear setting, the results of the paper also improve the standard Calderón–Zygmund regularity theory to the critical borderline case. When the principal term in the equation does not depend on the solution as its variable, our results recover and sharpen known available results. The approach is based on the perturbation technique introduced by Caffarelli and Peral together with a “double-scaling parameter” technique and the maximal function free approach introduced by Acerbi and Mingione.
We prove a gradient estimate for graphical spacelike mean curvature flow with a general Neumann boundary condition in dimension n = 2. This then implies that the mean curvature flow exists for all time and converges to a translating solution.
The convergence and blow-up results are established for the evolution of non-simple closed curves in an area-preserving curvature flow. It is shown that the global solution starting from a locally convex curve converges to an m-fold circle if the enclosed algebraic area A0 is positive, and evolves into a point if A0 = 0.
The explosion probability before time t of a branching diffusion satisfies a nonlinear parabolic partial differential equation. This equation, along with the natural boundary and initial conditions, has only the trivial solution, i.e. explosion in finite time does not occur, provided the creation rate does not grow faster than the square power at ∞.
We prove the existence of weak solutions for the strongly nonlinear parabolic problem
in the anisotropic Sobolev space , where the data f are assumed to be in the dual, and the nonlinear term g(x, t, s) has growth and sign conditions on s.
Cancer spread is a dynamical process occurring not only in time but also in space which, for solid tumors at least, can be modeled quantitatively by reaction and diffusion equations with a bistable behavior: tumor cell colonization happens in a portion of tissue and propagates, but in some cases the process is stopped. Such a cancer proliferation/extintion dynamics is obtained in many mathematical models as a limit of complicated interacting biological fields. In this article we present a very basic model of cancer proliferation adopting the bistable equation for a single tumor cell dynamics. The reaction-diffusion theory is numerically and analytically studied and then extended in order to take into account dispersal effects in cancer progression in analogy with ecological models based on the porous medium equation. Possible implications of this approach for explanation and prediction of tumor development on the lines of existing studies on brain cancer progression are discussed. The potential role of continuum models in connecting the two predominant interpretative theories about cancer, once formalized in appropriate mathematical terms, is discussed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.