We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this note, it is shown that the differential polynomial of the form $Q(f)^{(k)}-p$ has infinitely many zeros and particularly $Q(f)^{(k)}$ has infinitely many fixed points for any positive integer k, where f is a transcendental meromorphic function, p is a nonzero polynomial and Q is a polynomial with coefficients in the field of small functions of f. The results are traced back to Problems 1.19 and 1.20 in the book of research problems by Hayman and Lingham [Research Problems in Function Theory, Springer, 2019]. As a consequence, we give an affirmative answer to an extended problem on the zero distribution of $(f^n)'-p$, proposed by Chiang and considered by Bergweiler [Bull. Hong Kong Math. Soc.1(1997), p. 97–101].
We present a one-parameter family Fλ of transcendental entire functions with zeros, whose Newton’s method yields wandering domains, coexisting with the basins of the roots of Fλ. Wandering domains for Newton maps of zero-free functions have been built before by, e.g. Buff and Rückert [23] based on the lifting method. This procedure is suited to our Newton maps as members of the class of projectable functions (or maps of the cylinder), i.e. transcendental meromorphic functions f(z) in the complex plane that are semiconjugate, via the exponential, to some map g(w), which may have at most a countable number of essential singularities. In this paper, we make a systematic study of the general relation (dynamical and otherwise) between f and g, and inspect the extension of the logarithmic lifting method of periodic Fatou components to our context, especially for those g of finite-type. We apply these results to characterize the entire functions with zeros whose Newton’s method projects to some map g which is defined at both 0 and $\infty$. The family Fλ is the simplest in this class, and its parameter space shows open sets of λ-values in which the Newton map exhibits wandering or Baker domains, in both cases regions of initial conditions where Newton’s root-findingmethod fails.
We consider uniqueness problems for meromorphic inner functions on the upper half-plane. In these problems, we consider spectral data depending partially or fully on the spectrum, derivative values at the spectrum, Clark measure, or the spectrum of the negative of a meromorphic inner function. Moreover, we consider applications of these uniqueness results to inverse spectral theory of canonical Hamiltonian systems and obtain generalizations of the Borg-Levinson two-spectra theorem for canonical Hamiltonian systems and unique determination of a Hamiltonian from its spectral measure under some conditions.
We classify the automorphic Lie algebras of equivariant maps from a complex torus to $\mathfrak{sl}_2(\mathbb{C})$. For each case, we compute a basis in a normal form. The automorphic Lie algebras correspond precisely to two disjoint families of Lie algebras parametrised by the modular curve of $\mathrm{PSL}_2({\mathbb{Z}})$, apart from four cases, which are all isomorphic to Onsager’s algebra.
Let ${\mathbb D}$ be the open unit disk, and let $\mathcal {A}(p)$ be the class of functions f that are holomorphic in ${\mathbb D}\backslash \{p\}$ with a simple pole at $z=p\in (0,1)$, and $f'(0)\neq 0$. In this article, we significantly improve lower bounds of the Bloch and the Landau constants for functions in ${\mathcal A}(p)$ which were obtained in Bhowmik and Sen (2023, Monatshefte für Mathematik, 201, 359–373) and conjecture on the exact values of such constants.
We obtain bounds for certain functionals defined on a class of meromorphic functions in the unit disc of the complex plane with a nonzero simple pole. These bounds are sharp in a certain sense. We also discuss possible applications of this result. Finally, we generalise the result to meromorphic functions with more than one simple pole.
We consider meromorphic solutions of functional-differential equations
\[ f^{(k)}(z)=a(f^{n}\circ g)(z)+bf(z)+c, \]
where $n,\,~k$ are two positive integers. Firstly, using an elementary method, we describe the forms of $f$ and $g$ when $f$ is rational and $a(\neq 0)$, $b$, $c$ are constants. In addition, by employing Nevanlinna theory, we show that $g$ must be linear when $f$ is transcendental and $a(\neq 0)$, $b$, $c$ are polynomials in $\mathbb {C}$.
A function which is transcendental and meromorphic in the plane has at least two singular values. On the one hand, if a meromorphic function has exactly two singular values, it is known that the Hausdorff dimension of the escaping set can only be either
$2$
or
$1/2$
. On the other hand, the Hausdorff dimension of escaping sets of Speiser functions can attain every number in
$[0,2]$
(cf. [M. Aspenberg and W. Cui. Hausdorff dimension of escaping sets of meromorphic functions. Trans. Amer. Math. Soc.374(9) (2021), 6145–6178]). In this paper, we show that number of singular values which is needed to attain every Hausdorff dimension of escaping sets is not more than
$4$
.
We investigate the behaviour of families of meromorphic functions in the neighbourhood of points of non-normality and prove certain covering properties that complement Montel’s Theorem. In particular, we also obtain characterisations of non-normality in terms of such properties.
We prove several results on unavoidable families of meromorphic functions. For instance, we give new examples of families of cardinality 3 that are unavoidable with respect to the set of meromorphic functions on
$\mathbb C$
. We further obtain families consisting of less than three functions that are unavoidable with respect to certain subsets of meromorphic functions. In the other direction, we show that for every meromorphic function f, there exists an entire function that avoids f on
$\mathbb C$
.
This paper is part of a program to understand the parameter spaces of dynamical systems generated by meromorphic functions with finitely many singular values. We give a full description of the parameter space for a specific family based on the exponential function that has precisely two finite asymptotic values and one attracting fixed point. It represents a step beyond the previous work by Goldberg and Keen [The mapping class group of a generic quadratic rational map and automorphisms of the 2-shift. Invent. Math.101(2) (1990), 335–372] on degree two rational functions with analogous constraints: two critical values and an attracting fixed point. What is interesting and promising for pushing the general program even further is that, despite the presence of the essential singularity, our new functions exhibit a dynamic structure as similar as one could hope to the rational case, and that the philosophy of the techniques used in the rational case could be adapted.
The aim of this paper is twofold. The first aim is to describe the entire solutions of the partial differential equation (PDE) $u_{z_1}^2+2Bu_{z_1}u_{z_2}+u_{z_2}^2=e^g$, where B is a constant and g is a polynomial or an entire function in $\mathbb {C}^2$. The second aim is to consider the entire solutions of another PDE, which is a generalization of the well-known PDE of tubular surfaces.
This work studies slice functions over finite-dimensional division algebras. Their zero sets are studied in detail along with their multiplicative inverses, for which some unexpected phenomena are discovered. The results are applied to prove some useful properties of the subclass of slice regular functions, previously known only over quaternions. Firstly, they are applied to derive from the maximum modulus principle a version of the minimum modulus principle, which is in turn applied to prove the open mapping theorem. Secondly, they are applied to prove, in the context of the classification of singularities, the counterpart of the Casorati-Weierstrass theorem.
We prove several results concerning the relative position of points in the postsingular set P(f) of a meromorphic map f and the boundary of a Baker domain or the successive iterates of a wandering component. For Baker domains we answer a question of Mihaljević-Brandt and Rempe-Gillen. For wandering domains we show that if the iterates Un of such a domain have uniformly bounded diameter, then there exists a sequence of postsingular values pn such that ${\rm dist} (p_n, U_n)\to 0$ as $n\to \infty $. We also prove that if $U_n \cap P(f)=\emptyset $ and the postsingular set of f lies at a positive distance from the Julia set (in ℂ), then the sequence of iterates of any wandering domain must contain arbitrarily large disks. This allows to exclude the existence of wandering domains for some meromorphic maps with infinitely many poles and unbounded set of singular values.
Let $\{\mathbf{F}(n)\}_{n\in \mathbb{N}}$ and $\{\mathbf{G}(n)\}_{n\in \mathbb{N}}$ be linear recurrence sequences. It is a well-known Diophantine problem to determine the finiteness of the set ${\mathcal{N}}$ of natural numbers such that their ratio $\mathbf{F}(n)/\mathbf{G}(n)$ is an integer. In this paper we study an analogue of such a divisibility problem in the complex situation. Namely, we are concerned with the divisibility problem (in the sense of complex entire functions) for two sequences $F(n)=a_{0}+a_{1}f_{1}^{n}+\cdots +a_{l}f_{l}^{n}$ and $G(n)=b_{0}+b_{1}g_{1}^{n}+\cdots +b_{m}g_{m}^{n}$, where the $f_{i}$ and $g_{j}$ are nonconstant entire functions and the $a_{i}$ and $b_{j}$ are non-zero constants except that $a_{0}$ can be zero. We will show that the set ${\mathcal{N}}$ of natural numbers such that $F(n)/G(n)$ is an entire function is finite under the assumption that $f_{1}^{i_{1}}\cdots f_{l}^{i_{l}}g_{1}^{j_{1}}\cdots g_{m}^{j_{m}}$ is not constant for any non-trivial index set $(i_{1},\ldots ,i_{l},j_{1},\ldots ,j_{m})\in \mathbb{Z}^{l+m}$.
This paper concerns the problem of algebraic differential independence of the gamma function and ${\mathcal{L}}$-functions in the extended Selberg class. We prove that the two kinds of functions cannot satisfy a class of algebraic differential equations with functional coefficients that are linked to the zeros of the ${\mathcal{L}}$-function in a domain $D:=\{z:0<\text{Re}\,z<\unicode[STIX]{x1D70E}_{0}\}$ for a positive constant $\unicode[STIX]{x1D70E}_{0}$.
This paper presents two natural extensions of the topology of the space of scalar meromorphic functions M(Ω) described by Grosse-Erdmann in 1995 to spaces of vector-valued meromorphic functions M(ΩE). When E is locally complete and does not contain copies of ω we compare these topologies with the topology induced by the representation M (Ω, E) ≃ M(Ω)ε E recently obtained by Bonet, Maestre and the author.
Functions defined on closed sets are simultaneously approximated and interpolated by meromorphic functions with prescribed poles and zeros outside the set of approximation.
We construct meromorphic functions with asymptotic power series expansion in
${{z}^{-1}}$
at $\infty$ on an Arakelyan set $A$ having prescribed zeros and poles outside $A$. We use our results to prove approximation theorems where the approximating function fulfills interpolation restrictions outside the set of approximation.
Let be a compact Riemann surface, be the complement of a nonvoid finite subset of and A() be the ring of finite sums of meromorphic functions in with finite divisor. In this paper it is proved that every nonzero f ∈ A() can be decomposed as a product αβ, where α is either a unit or a product of powers of irreducible elements of A(), uniquely determined by f up to multiplication by units, and β is a product of functions of the type eφ – 1, with φ holomorphic and nonconstant in . Furthermore, a similar result is obtained for a certain class of subrings of A().
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.