We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\mathcal {S}$ denote the class of univalent functions in the open unit disc $\mathbb {D}:=\{z\in \mathbb {C}:\, |z|<1\}$ with the form $f(z)= z+\sum _{n=2}^{\infty }a_n z^n$. The logarithmic coefficients $\gamma _{n}$ of $f\in \mathcal {S}$ are defined by $F_{f}(z):= \log (f(z)/z)=2\sum _{n=1}^{\infty }\gamma _{n}z^{n}$. The second Hankel determinant for logarithmic coefficients is defined by
For $-1\leq B \lt A\leq 1$, let $\mathcal{C}(A,B)$ denote the class of normalized Janowski convex functions defined in the unit disk $\mathbb{D}:=\{z\in\mathbb{C}:|z| \lt 1\}$ that satisfy the subordination relation $1+zf''(z)/f'(z)\prec (1+Az)/(1+Bz)$. In the present article, we determine the sharp estimate of the Schwarzian norm for functions in the class $\mathcal{C}(A,B)$. The Dieudonné’s lemma which gives the exact region of variability for derivatives at a point of bounded functions, plays the key role in this study, and we also use this lemma to construct the extremal functions for the sharpness by a new method.
Let $\mathcal {K}_u$ denote the class of all analytic functions f in the unit disk $\mathbb {D}:=\{z\in \mathbb {C}:|z|<1\}$, normalised by $f(0)=f'(0)-1=0$ and satisfying $|zf'(z)/g(z)-1|<1$ in $\mathbb {D}$ for some starlike function g. Allu, Sokól and Thomas [‘On a close-to-convex analogue of certain starlike functions’, Bull. Aust. Math. Soc.108 (2020), 268–281] obtained a partial solution for the Fekete–Szegö problem and initial coefficient estimates for functions in $\mathcal {K}_u$, and posed a conjecture in this regard. We prove this conjecture regarding the sharp estimates of coefficients and solve the Fekete–Szegö problem completely for functions in the class $\mathcal {K}_u$.
For a domain G in the one-point compactification
$\overline{\mathbb{R}}^n = {\mathbb{R}}^n \cup \{ \infty\}$
of
${\mathbb{R}}^n, n \geqslant 2$
, we characterise the completeness of the modulus metric
$\mu_G$
in terms of a potential-theoretic thickness condition of
$\partial G\,,$
Martio’s M-condition [35]. Next, we prove that
$\partial G$
is uniformly perfect if and only if
$\mu_G$
admits a minorant in terms of a Möbius invariant metric. Several applications to quasiconformal maps are given.
Let f be analytic in the unit disk
$\mathbb {D}=\{z\in \mathbb {C}:|z|<1 \}$
and let
${\mathcal S}$
be the subclass of normalised univalent functions with
$f(0)=0$
and
$f'(0)=1$
, given by
$f(z)=z+\sum _{n=2}^{\infty }a_n z^n$
. Let F be the inverse function of f, given by
$F(\omega )=\omega +\sum _{n=2}^{\infty }A_n \omega ^n$
for
$|\omega |\le r_0(f)$
. Denote by
$ \mathcal {S}_p^{* }(\alpha )$
the subset of
$ \mathcal {S}$
consisting of the spirallike functions of order
$\alpha $
in
$\mathbb {D}$
, that is, functions satisfying
for
$z\in \mathbb {D}$
,
$0\le \alpha <1$
and
$\gamma \in (-\pi /2,\pi /2)$
. We give sharp upper and lower bounds for both
$ |a_3|-|a_2| $
and
$ |A_3|-|A_2| $
when
$f\in \mathcal {S}_p^{* }(\alpha )$
, thus solving an open problem and presenting some new inequalities for coefficient differences.
For
$n\geq 3$
, let
$Q_n\subset \mathbb {C}$
be an arbitrary regular n-sided polygon. We prove that the Cauchy transform
$F_{Q_n}$
of the normalised two-dimensional Lebesgue measure on
$Q_n$
is univalent and starlike but not convex in
$\widehat {\mathbb {C}}\setminus Q_n$
.
Let $f$ be analytic in the unit disk $\mathbb{D}=\{z\in \mathbb{C}:|z|<1\}$ and ${\mathcal{S}}$ be the subclass of normalised univalent functions given by $f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$ for $z\in \mathbb{D}$. We give sharp upper and lower bounds for $|a_{3}|-|a_{2}|$ and other related functionals for the subclass ${\mathcal{F}}_{O}(\unicode[STIX]{x1D706})$ of Ozaki close-to-convex functions.
For $f$ analytic in the unit disk $\mathbb{D}$, we consider the close-to-convex analogue of a class of starlike functions introduced by R. Singh [‘On a class of star-like functions’, Compos. Math.19(1) (1968), 78–82]. This class of functions is defined by $|zf^{\prime }(z)/g(z)-1|<1$ for $z\in \mathbb{D}$, where $g$ is starlike in $\mathbb{D}$. Coefficient and other results are obtained for this class of functions.
Let ${\mathcal{S}}$ be the family of analytic and univalent functions $f$ in the unit disk $\mathbb{D}$ with the normalization $f(0)=f^{\prime }(0)-1=0$, and let $\unicode[STIX]{x1D6FE}_{n}(f)=\unicode[STIX]{x1D6FE}_{n}$ denote the logarithmic coefficients of $f\in {\mathcal{S}}$. In this paper we study bounds for the logarithmic coefficients for certain subfamilies of univalent functions. Also, we consider the families ${\mathcal{F}}(c)$ and ${\mathcal{G}}(c)$ of functions $f\in {\mathcal{S}}$ defined by
for some $c\in (0,3]$ and $c\in (0,1]$, respectively. We obtain the sharp upper bound for $|\unicode[STIX]{x1D6FE}_{n}|$ when $n=1,2,3$ and $f$ belongs to the classes ${\mathcal{F}}(c)$ and ${\mathcal{G}}(c)$, respectively. The paper concludes with the following two conjectures:
∙ If $f\in {\mathcal{F}}(-1/2)$, then $|\unicode[STIX]{x1D6FE}_{n}|\leq 1/n(1-(1/2^{n+1}))$ for $n\geq 1$, and
In this paper, we study quasiconformal extensions of harmonic mappings. Utilizing a complex parameter, we build a bridge between the quasiconformal extension theorem for locally analytic functions given by Ahlfors [‘Sufficient conditions for quasiconformal extension’, Ann. of Math. Stud.79 (1974), 23–29] and the one for harmonic mappings recently given by Hernández and Martín [‘Quasiconformal extension of harmonic mappings in the plane’, Ann. Acad. Sci. Fenn. Math.38 (2) (2013), 617–630]. We also give a quasiconformal extension of a harmonic Teichmüller mapping, whose maximal dilatation estimate is asymptotically sharp.
In this paper we develop a variational method for the Loewner equation in higher dimensions. As a result we obtain a version of Pontryagin’s maximum principle from optimal control theory for the Loewner equation in several complex variables. Based on recent work of Arosio, Bracci, and
Wold, we then apply our version of the Pontryagin maximum principle to obtain first-order necessary
conditions for the extremal mappings for a wide class of extremal problems over the set of normalized
biholomorphic mappings on the unit ball in ${{\mathbb{C}}^{n}}$.
We consider a recent work of Pascu and Pascu [‘Neighbourhoods of univalent functions’, Bull. Aust. Math. Soc.83(2) (2011), 210–219] and rectify an error that appears in their work. In addition, we study certain analogous results for sense-preserving harmonic mappings in the unit disc $\vert z\vert \lt 1$. As a corollary to this result, we derive a coefficient condition for a sense-preserving harmonic mapping to be univalent in $\vert z\vert \lt 1$.
We observe that any set of uniqueness for the Dirichlet space $\mathcal{D}$ is a set of uniqueness for the class $S$ of normalized univalent holomorphic functions.
In this article we characterize the univalent harmonic mappings from the exterior of the unit disk, $\Delta $, onto a simply connected domain $\Omega $ containing infinity and which are solutions of the system of elliptic partial differential equations
$\overline{{{f}_{{\bar{z}}}}\left( Z \right)}=a\left( z \right){{f}_{z}}\left( z \right)$
where the second dilatation function $a\left( z \right)$ is a finite Blaschke product. At the end of this article, we apply our results to nonparametric minimal surfaces having the property that the image of its Gauss map is the upper half-sphere covered once or twice.
We give a characterization of univalent positively oriented harmonic mappings ƒ defined on an exterior neighbourhood of the closed unit disk { z: | z| ≤1} such that .
We introduce the class of Harnack domains in which a Harnack type inequality holds for positive harmonic functions with bounds given in terms of the distance to the domain's boundary. We give conditions connecting Harnack domains with several different complete metrics. We characterize the simply connected plane domains which are Harnack and discuss associated topics. We extend classical results to Harnack domains and give applications concerning the rate of growth of various functions defined in Harnack domains. We present a perhaps new characterization for quasidisks.
Let ƒ be regular univalent and normalized in the unit disc U (i.e. ƒ ∊ S) and continuous on U ∈ T, where T denotes the boundary of U.
Recently Essén proved [5] a conjecture of Piranian [7] stating that if the derivative of ƒ ∊ S is bounded in U and ƒ(z1) = ƒ(z2) = … = ƒ(zn) for Zj ∊ T, 1 ≤ j ≤ n, then n ≤ 2. In fact, Essén proved a more general result, using a deep result on harmonic functions. The aim of the following article is to replace Essén's proof by a completely different proof which is based only on Goluzin's inequalities and is much more elementary.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.