We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that any continuous function can be locally approximated at a fixed point
$x_{0}$
by an uncountable family resistant to disruptions by the family of continuous functions for which
$x_{0}$
is a fixed point. In that context, we also consider the property of quasicontinuity.
We study a quadruple sequence and express its common limit by Lauricella’s hypergeometric function FD(¼,¼,¼.¼, 1; z1, z2, z3)of three variables. We give a functional equation of FD, which is the key to get our expression of the common limit.
We study the Hausdorff dimensions of invariant sets for self-similar and self-affine iterated function systems in the Heisenberg group. In our principal result we obtain almost sure formulae for the dimensions of self-affine invariant sets, extending to the Heisenberg setting some results of Falconer and Solomyak in Euclidean space. As an application, we complete the proof of the comparison theorem for Euclidean and Heisenberg Hausdorff dimension initiated by Balogh, Rickly and Serra-Cassano.
An example is given of a surjective map τ: [0,1] → [0,1] which takes every interval of [0,1] onto [0,1] eventually, but does not do so for certain other sets of positive measure.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.