We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We initiate the study of outer automorphism groups of special groups $G$, in the Haglund–Wise sense. We show that $\operatorname {Out}(G)$ is infinite if and only if $G$ splits over a co-abelian subgroup of a centraliser and there exists an infinite-order ‘generalised Dehn twist’. Similarly, the coarse-median preserving subgroup $\operatorname {Out}_{\rm cmp}(G)$ is infinite if and only if $G$ splits over an actual centraliser and there exists an infinite-order coarse-median-preserving generalised Dehn twist. The proof is based on constructing and analysing non-small, stable $G$-actions on $\mathbb {R}$-trees whose arc-stabilisers are centralisers or closely related subgroups. Interestingly, tripod-stabilisers can be arbitrary centralisers, and thus are large subgroups of $G$. As a result of independent interest, we determine when generalised Dehn twists associated to splittings of $G$ preserve the coarse median structure.
The automorphism group $\operatorname {Aut}(F_n)$ of the free group $F_n$ acts on a space $A_d(n)$ of Jacobi diagrams of degree d on n oriented arcs. We study the $\operatorname {Aut}(F_n)$-module structure of $A_d(n)$ by using two actions on the associated graded vector space of $A_d(n)$: an action of the general linear group $\operatorname {GL}(n,\mathbb {Z})$ and an action of the graded Lie algebra $\mathrm {gr}(\operatorname {IA}(n))$ of the IA-automorphism group $\operatorname {IA}(n)$ of $F_n$ associated with its lower central series. We extend the action of $\mathrm {gr}(\operatorname {IA}(n))$ to an action of the associated graded Lie algebra of the Andreadakis filtration of the endomorphism monoid of $F_n$. By using this action, we study the $\operatorname {Aut}(F_n)$-module structure of $A_d(n)$. We obtain an indecomposable decomposition of $A_d(n)$ as $\operatorname {Aut}(F_n)$-modules for $n\geq 2d$. Moreover, we obtain the radical filtration of $A_d(n)$ for $n\geq 2d$ and the socle of $A_3(n)$.
In this paper, we study the structure of the rational cohomology groups of the IA-automorphism group $\mathrm {IA}_3$ of the free group of rank three by using combinatorial group theory and representation theory. In particular, we detect a nontrivial irreducible component in the second cohomology group of $\mathrm {IA}_3$, which is not contained in the image of the cup product map of the first cohomology groups. We also show that the triple cup product of the first cohomology groups is trivial. As a corollary, we obtain that the fourth term of the lower central series of $\mathrm {IA}_3$ has finite index in that of the Andreadakis–Johnson filtration of $\mathrm {IA}_3$.
We construct free abelian subgroups of the group U(AΓ) of untwisted outer automorphisms of a right-angled Artin group, thus giving lower bounds on the virtual cohomological dimension. The group U(AΓ) was studied in [5] by constructing a contractible cube complex on which it acts properly and cocompactly, giving an upper bound for the virtual cohomological dimension. The ranks of our free abelian subgroups are equal to the dimensions of principal cubes in this complex. These are often of maximal dimension, so that the upper and lower bounds agree. In many cases when the principal cubes are not of maximal dimension we show there is an invariant contractible subcomplex of strictly lower dimension.
An automorphism of a graph product of groups is conjugating if it sends each factor to a conjugate of a factor (possibly different). In this article, we determine precisely when the group of conjugating automorphisms of a graph product satisfies Kazhdan’s property (T) and when it satisfies some vastness properties including SQ-universality.
Let p be an odd prime and let G be a non-abelian finite p-group of exponent p2 with three distinct characteristic subgroups, namely 1, Gp and G. The quotient group G/Gp gives rise to an anti-commutative 𝔽p-algebra L such that the action of Aut (L) is irreducible on L; we call such an algebra IAC. This paper establishes a duality G ↔ L between such groups and such IAC algebras. We prove that IAC algebras are semisimple and we classify the simple IAC algebras of dimension at most 4 over certain fields. We also give other examples of simple IAC algebras, including a family related to the m-th symmetric power of the natural module of SL(2, 𝔽).
For a group G, a weak Cayley table isomorphism is a bijection f : G → G such that f(g1g2) is conjugate to f(g1)f(g2) for all g1, g2 ∈ G. The set of all weak Cayley table isomorphisms forms a group (G) that is the group of symmetries of the weak Cayley table of G. We determine (G) for each of the 17 wallpaper groups G, and for some other crystallographic groups.
We prove twisted homological stability with polynomial coefficients for automorphism groups of free nilpotent groups of any given class. These groups interpolate between two extremes for which homological stability was known before, the general linear groups over the integers and the automorphism groups of free groups. The proof presented here uses a general result that applies to arbitrary extensions of groups, and that has other applications as well.
An almost-direct product of free groups is an iterated semidirect product of finitely generated free groups in which the action of the constituent free groups on the homology of one another is trivial. We determine the structure of the cohomology ring of such a group. This is used to analyze the topological complexity of the associated Eilenberg–MacLane space.
An automorphism φ of a group G is said to be normal if φ(H) = H for each normal subgroup H of G. These automorphisms form a group containing the group of inner automorphisms. When G is a non-abelian free (or free soluble) group, it is known that these groups of automorphisms coincide, but this is not always true when G is a free metabelian nilpotent group. The aim of this paper is to determine the group of normal automorphisms in this last case.
Let $G=\left( \mathbb{Z}/a\rtimes \mathbb{Z}/b \right)\times \text{S}{{\text{L}}_{2}}\left( {{\mathbb{F}}_{p}} \right)$, and let $X\left( n \right)$ be an $n$-dimensional $CW$-complex of the homotopy type of an $n$-sphere. We study the automorphism group $\text{Aut}\left( G \right)$ in order to compute the number of distinct homotopy types of spherical space forms with respect to free and cellular $G$-actions on all $CW$-complexes $X\left( 2dn-1 \right)$, where $2d$ is the period of $G$. The groups $\varepsilon \left( X\left( 2dn-1 \right)/\mu \right)$ of self homotopy equivalences of space forms $X\left( 2dn-1 \right)/\mu$ associated with free and cellular $G$-actions $\mu$ on $X\left( 2dn-1 \right)$ are determined as well.
In this paper we construct new obstructions for the surjectivity of the Johnson homomorphism of the automorphism group of a free group. We also determine the structure of the cokernel of the Johnson homomorphism for degrees 2 and 3.
Let $M$ be a module over the ring $R$. Extensive use is made of Krull codimension to study further the Artinian-finitary automorphism group $\[ F_1\hbox{\rm Aut}_RM \,{=}\, \{g\,{\in}\hbox{ Aut}_RM \,{:}\, M(g - 1) \hbox{ is } R\hbox{-Artinian}\} \]$ of $M$ over $R$. Substantial progress is made where either $M$ is residually Noetherian or $R$ is commutative. There are some group-theoretic consequences of the two main structure theorems.
The automorphism group of a virtually polycyclic group $G$ is either virtually polycyclic or it contains a non-abelian free subgroup. We describe conditions on the structure of $G$ to decide which of the two alternatives occurs for $Aut(G).$
Using the definition of regular p-group given by M. Hall [1], a new class of finite groups called regular-nilpotent has been defined. The action of these groups as automorphisms of compact Riemann surfaces has been investigated. It is proved that a necessary and sufficient condition for a Fuchsian group to cover a regular-nilpotent group is that its orbit genus be zero and its periods satisfy the least common multiple condition, first defined by Harvey [2] and Maclachlan [4].
We investigate the problem of determining when $\text{IA}({{F}_{n}}({{\mathbf{A}}_{m}}\mathbf{A}))$ is finitely generated for all $n$ and $m$, with $n\ge 2$ and $m\ne 1$. If $m$ is a nonsquare free integer then $\text{IA}({{F}_{n}}({{\mathbf{A}}_{m}}\mathbf{A}))$ is not finitely generated for all $n$ and if $m$ square free integer then $\text{IA}({{F}_{n}}({{\mathbf{A}}_{m}}\mathbf{A}))$ is finitely generated for all $n$, with $n\ne 3$, and $\text{IA}({{F}_{3}}({{\mathbf{A}}_{m}}\mathbf{A}))$ is not finitely generated. In case $m$ is square free, Bachmuth and Mochizuki claimed in ([7], Problem 4) that $\text{TR}({{\mathbf{A}}_{m}}\mathbf{A})$ is 1 or 4. We correct their assertion by proving that $\text{TR}({{\mathbf{A}}_{m}}\mathbf{A})=\infty$.
Let Mn, c denote the free n-generator metabelian nilpotent group of class c. For m ≤ n – 2, every primitive system of m elements of Mn, c can be lifted to a primitive system of m elements of the absolutely free group Fn of rank n. The restriction on m cannot be improved.
The object of this paper is to exhibit an infinite set of finite semisimple groups H, each of which is the automorphism group of some infinite group, but of no finite group. We begin the construction by choosing a finite simple group S whose outer automorphism group and Schur multiplier possess certain specified properties. The group H is a certain subgroup of Aut S which contains S. For example, most of the PSL's over a non-prime finite field are candidates for S, and in this case, H is generated by all of the inner, diagonal and graph automorphisms of S.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.