We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Motivated by approaches to the word problem for one-relation monoids arising from work of Adian and Oganesian (1987), Guba (1997), and Ivanov, Margolis, and Meakin (2001), we study the submonoid and rational subset membership problems in one-relation monoids and in positive one-relator groups. We give the first known examples of positive one-relator groups with undecidable submonoid membership problem, and we apply this to give the first known examples of one-relation monoids with undecidable submonoid membership problem. We construct several infinite families of one-relation monoids with undecidable submonoid membership problem, including examples that are defined by relations of the form $w=1$ but which are not groups, and examples defined by relations of the form $u=v$ where both of u and v are nonempty. As a consequence, we obtain a classification of the right-angled Artin groups that can arise as subgroups of one-relation monoids. We also give examples of monoids with a single defining relation of the form $aUb = a$ and examples of the form $aUb=aVa$, with undecidable rational subset membership problem. We give a one-relator group defined by a freely reduced word of the form $uv^{-1}$ with $u, v$ positive words, in which the prefix membership problem is undecidable. Finally, we prove the existence of a special two-relator inverse monoid with undecidable word problem, and in which both the relators are positive words. As a corollary, we also find a positive two-relator group with undecidable prefix membership problem. In proving these results, we introduce new methods for proving undecidability of the rational subset membership problem in monoids and groups, including by finding suitable embeddings of certain trace monoids.
Using tools from computable analysis, we develop a notion of effectiveness for general dynamical systems as those group actions on arbitrary spaces that contain a computable representative in their topological conjugacy class. Most natural systems one can think of are effective in this sense, including some group rotations, affine actions on the torus and finitely presented algebraic actions. We show that for finitely generated and recursively presented groups, every effective dynamical system is the topological factor of a computable action on an effectively closed subset of the Cantor space. We then apply this result to extend the simulation results available in the literature beyond zero-dimensional spaces. In particular, we show that for a large class of groups, many of these natural actions are topological factors of subshifts of finite type.
We prove that centralisers of elements in [finitely generated free]-by-cyclic groups are computable. As a corollary, given two conjugate elements in a [finitely generated free]-by-cyclic group, the set of conjugators can be computed and the conjugacy problem with context-free constraints is decidable. We pose several problems arising naturally from this work.
The aim of this paper is to study supersoluble skew braces, a class of skew braces that encompasses all finite skew braces of square-free order. It turns out that finite supersoluble skew braces have Sylow towers and that in an arbitrary supersoluble skew brace B many relevant skew brace-theoretical properties are easier to identify: For example, a centrally nilpotent ideal of B is B-centrally nilpotent, a fact that simplifies the computational search for the Fitting ideal; also, B has finite multipermutational level if and only if $(B,+)$ is nilpotent.
Given a finite presentation of the structure skew brace $G(X,r)$ associated with a finite nondegenerate solution of the Yang–Baxter equation (YBE), there is an algorithm that decides if $G(X,r)$ is supersoluble or not. Moreover, supersoluble skew braces are examples of almost polycyclic skew braces, so they give rise to solutions of the YBE on which one can algorithmically work on.
We prove that, given a finitely generated subgroup H of a free group F, the following questions are decidable: is H closed (dense) in F for the pro-(met)abelian topology? Is the closure of H in F for the pro-(met)abelian topology finitely generated? We show also that if the latter question has a positive answer, then we can effectively construct a basis for the closure, and the closure has decidable membership problem in any case. Moreover, it is decidable whether H is closed for the pro-$\mathbf {V}$ topology when $\mathbf {V}$ is an equational pseudovariety of finite groups, such as the pseudovariety $\mathbf {S}_k$ of all finite solvable groups with derived length $\leq k$. We also connect the pro-abelian topology with the topologies defined by abelian groups of bounded exponent.
In this paper, we study intersection configurations – which describe the behaviour of multiple (finite) intersections of subgroups with respect to finite generability – in the realm of free and free times free-abelian (FTFA) groups. We say that a configuration is realizable in a group $G$ if there exist subgroups $H_1,\ldots, H_k \leqslant G$ realizing it. It is well known that free groups ${\mathbb {F}_{n}}$ satisfy the Howson property: the intersection of any two finitely generated subgroups is again finitely generated. We show that the Howson property is indeed the only obstruction for multiple intersection configurations to be realizable within nonabelian free groups. On the contrary, FTFA groups ${\mathbb {F}_{n}} \times \mathbb {Z}^m$ are well known to be non-Howson. We also study multiple intersections within FTFA groups, providing an algorithm to decide, given $k\geq 2$ finitely generated subgroups, whether their intersection is again finitely generated and, in the affirmative case, compute a ‘basis’ for it. We finally prove that any intersection configuration is realizable in an FTFA group ${\mathbb {F}_{n}} \times \mathbb {Z}^m$, for $n\geq 2$ and large enough $m$. As a consequence, we exhibit finitely presented groups where every intersection configuration is realizable.
We study the following decision problem: given an exponential equation $a_1g_1^{x_1}a_2g_2^{x_2}\dots a_ng_n^{x_n}=1$ over a recursively presented group G, decide if it has a solution with all $x_i$ in $\mathbb {Z}$. We construct a finitely presented group G where this problem is decidable for equations with one variable and is undecidable for equations with two variables. We also study functions estimating possible solutions of such an equation through the lengths of its coefficients with respect to a given generating set of G. Another result concerns Turing degrees of some natural fragments of the above problem.
We present a metric condition $\TTMetric$ which describes the geometry of classical small cancellation groups and applies also to other known classes of groups such as two-dimensional Artin groups. We prove that presentations satisfying condition $\TTMetric$ are diagrammatically reducible in the sense of Sieradski and Gersten. In particular, we deduce that the standard presentation of an Artin group is aspherical if and only if it is diagrammatically reducible. We show that, under some extra hypotheses, $\TTMetric$-groups have quadratic Dehn functions and solvable conjugacy problem. In the spirit of Greendlinger's lemma, we prove that if a presentation P = 〈X| R〉 of group G satisfies conditions $\TTMetric -C'(\frac {1}{2})$, the length of any nontrivial word in the free group generated by X representing the trivial element in G is at least that of the shortest relator. We also introduce a strict metric condition $\TTMetricStrict$, which implies hyperbolicity.
The main objective of this paper is the following two results. (1) There exists a computable bi-orderable group that does not have a computable bi-ordering; (2) there exists a bi-orderable, two-generated computably presented solvable group with undecidable word problem. Both of the groups can be found among two-generated solvable groups of derived length $3$.
(1) [a]nswers a question posed by Downey and Kurtz; (2) answers a question posed by Bludov and Glass in Kourovka Notebook.
One of the technical tools used to obtain the main results is a computational extension of an embedding theorem of B. Neumann that was studied by the author earlier. In this paper we also compliment that result and derive new corollaries that might be of independent interest.
In this paper we continue the study of right-angled Artin groups up to commensurability initiated in [CKZ]. We show that RAAGs defined by different paths of length greater than 3 are not commensurable. We also characterise which RAAGs defined by paths are commensurable to RAAGs defined by trees of diameter 4. More precisely, we show that a RAAG defined by a path of length n > 4 is commensurable to a RAAG defined by a tree of diameter 4 if and only if n ≡ 2 (mod 4). These results follow from the connection that we establish between the classification of RAAGs up to commensurability and linear integer-programming.
A permutoid is a set of partial permutations that contains the identity and is such that partial compositions, when defined, have at most one extension in the set. In 2004 Peter Cameron conjectured that there can exist no algorithm that determines whether or not a permutoid based on a finite set can be completed to a finite permutation group. In this note we prove Cameron’s conjecture by relating it to our recent work on the profinite triviality problem for finitely presented groups. We also prove that the existence problem for finite developments of rigid pseudogroups is unsolvable. In an appendix, Steinberg recasts these results in terms of inverse semigroups.
It is well known that a finitely generated group ${\rm\Gamma}$ has Kazhdan’s property (T) if and only if the Laplacian element ${\rm\Delta}$ in $\mathbb{R}[{\rm\Gamma}]$ has a spectral gap. In this paper, we prove that this phenomenon is witnessed in $\mathbb{R}[{\rm\Gamma}]$. Namely, ${\rm\Gamma}$ has property (T) if and only if there exist a constant ${\it\kappa}>0$ and a finite sequence ${\it\xi}_{1},\ldots ,{\it\xi}_{n}$ in $\mathbb{R}[{\rm\Gamma}]$ such that ${\rm\Delta}^{2}-{\it\kappa}{\rm\Delta}=\sum _{i}{\it\xi}_{i}^{\ast }{\it\xi}_{i}$. This result suggests the possibility of finding new examples of property (T) groups by solving equations in $\mathbb{R}[{\rm\Gamma}]$, possibly with the assistance of computers.
In response to questions by Kassabov, Nikolov and Shalev, we show that a given subset A of a finite simple group G is the image of some word map w : G × G → G if and only if (i) A contains the identity and (ii) A is invariant under Aut(G).
Some recent results of Khukhro and Makarenko on the existence of characteristic -subgroups of finite index in a group G, for certain varieties , are used to obtain generalisations of some well-known results in the literature pertaining to groups G, in which all proper subgroups satisfy some condition or other related to the property ‘soluble-by-finite’. In addition, a partial generalisation is obtained for the aforementioned results on the existence of characteristic subgroups.
The computation of growth series for the higher Baumslag–Solitar groups is an open problem first posed by de la Harpe and Grigorchuk. We study the growth of the horocyclic subgroup as the key to the overall growth of these Baumslag–Solitar groups BS(p,q), where 1<p<q. In fact, the overall growth series can be represented as a modified convolution product with one of the factors being based on the series for the horocyclic subgroup. We exhibit two distinct algorithms that compute the growth of the horocyclic subgroup and discuss the time and space complexity of these algorithms. We show that when p divides q, the horocyclic subgroup has a geodesic combing whose words form a context-free (in fact, one-counter) language. A theorem of Chomsky–Schützenberger allows us to compute the growth series for this subgroup, which is rational. When p does not divide q, we show that no geodesic combing for the horocyclic subgroup forms a context-free language, although there is a context-sensitive geodesic combing. We exhibit a specific linearly bounded Turing machine that accepts this language (with quadratic time complexity) in the case of BS(2,3) and outline the Turing machine construction in the general case.
The first main result of the paper is a criterion for a partially commutative group $\mathbb{G}$ to be a domain. It allows us to reduce the study of algebraic sets over $\mathbb{G}$ to the study of irreducible algebraic sets, and reduce the elementary theory of $\mathbb{G}$ (of a coordinate group over $\mathbb{G}$) to the elementary theories of the direct factors of $\mathbb{G}$ (to the elementary theory of coordinate groups of irreducible algebraic sets).
Then we establish normal forms for quantifier-free formulas over a non-abelian directly indecomposable partially commutative group $\mathbb{H}$. Analogously to the case of free groups, we introduce the notion of a generalised equation and prove that the positive theory of $\mathbb{H}$ has quantifier elimination and that arbitrary first-order formulas lift from $\mathbb{H}$ to $\mathbb{H}\,*\,F$, where $F$ is a free group of finite rank. As a consequence, the positive theory of an arbitrary partially commutative group is decidable.
We show that the conjugacy problem is solvable in [finitely generated free]-by-cyclic groups, by using a result of O. Maslakova that one can algorithmically find generating sets for the fixed subgroups of free group automorphisms, and one of P. Brinkmann that one can determine whether two cyclic words in a free group are mapped to each other by some power of a given automorphism. We also solve the power conjugacy problem, and give an algorithm to recognize whether two given elements of a finitely generated free group are twisted conjugated to each other with respect to a given automorphism.
The class of co-context-free groups is studied. A co-context-free group is defined as one whose co-word problem (the complement of its word problem) is context-free. This class is larger than the subclass of context-free groups, being closed under the taking of finite direct products, restricted standard wreath products with context-free top groups, and passing to finitely generated subgroups and finite index overgroups. No other examples of co-context-free groups are known. It is proved that the only examples amongst polycyclic groups or the Baumslag–Solitar groups are virtually abelian. This is done by proving that languages with certain purely arithmetical properties cannot be context-free; this result may be of independent interest.