We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We find an upper bound for the number of groups of order n up to isomorphism in the variety ${\mathfrak {S}}={\mathfrak {A}_p}{\mathfrak {A}_q}{\mathfrak {A}_r}$, where p, q and r are distinct primes. We also find a bound on the orders and on the number of conjugacy classes of subgroups that are maximal amongst the subgroups of the general linear group that are also in the variety $\mathfrak {A}_q\mathfrak {A}_r$.
Let G be a permutation group on a finite set $\Omega $. The base size of G is the minimal size of a subset of $\Omega $ with trivial pointwise stabiliser in G. In this paper, we extend earlier work of Fawcett by determining the precise base size of every finite primitive permutation group of diagonal type. In particular, this is the first family of primitive groups arising in the O’Nan–Scott theorem for which the exact base size has been computed in all cases. Our methods also allow us to determine all the primitive groups of diagonal type with a unique regular suborbit.
Let G be a finite transitive group on a set $\Omega $, let $\alpha \in \Omega $, and let $G_{\alpha }$ be the stabilizer of the point $\alpha $ in G. In this paper, we are interested in the proportion
$$ \begin{align*} \frac{|\{\omega\in \Omega\mid \omega \textrm{ lies in a }G_{\alpha}\textrm{-orbit of cardinality at most 2}\}|}{|\Omega|}, \end{align*} $$
that is, the proportion of elements of $\Omega $ lying in a suborbit of cardinality at most 2. We show that, if this proportion is greater than $5/6$, then each element of $\Omega $ lies in a suborbit of cardinality at most 2, and hence G is classified by a result of Bergman and Lenstra. We also classify the permutation groups attaining the bound $5/6$.
We use these results to answer a question concerning the enumeration of Cayley graphs. Given a transitive group G containing a regular subgroup R, we determine an upper bound on the number of Cayley graphs on R containing G in their automorphism groups.
Let G be a permutation group on a set
$\Omega $
of size t. We say that
$\Lambda \subseteq \Omega $
is an independent set if its pointwise stabilizer is not equal to the pointwise stabilizer of any proper subset of
$\Lambda $
. We define the height of G to be the maximum size of an independent set, and we denote this quantity
$\textrm{H}(G)$
. In this paper, we study
$\textrm{H}(G)$
for the case when G is primitive. Our main result asserts that either
$\textrm{H}(G)< 9\log t$
or else G is in a particular well-studied family (the primitive large–base groups). An immediate corollary of this result is a characterization of primitive permutation groups with large relational complexity, the latter quantity being a statistic introduced by Cherlin in his study of the model theory of permutation groups. We also study
$\textrm{I}(G)$
, the maximum length of an irredundant base of G, in which case we prove that if G is primitive, then either
$\textrm{I}(G)<7\log t$
or else, again, G is in a particular family (which includes the primitive large–base groups as well as some others).
Let $G$ be a finite permutation group of degree $n$ and let ${\rm ifix}(G)$ be the involution fixity of $G$, which is the maximum number of fixed points of an involution. In this paper, we study the involution fixity of almost simple primitive groups whose socle $T$ is an alternating or sporadic group; our main result classifies the groups of this form with ${\rm ifix}(T) \leqslant n^{4/9}$. This builds on earlier work of Burness and Thomas, who studied the case where $T$ is an exceptional group of Lie type, and it strengthens the bound ${\rm ifix}(T) > n^{1/6}$ (with prescribed exceptions), which was proved by Liebeck and Shalev in 2015. A similar result for classical groups will be established in a sequel.
Generalising previous results on classical braid groups by Artin and Lin, we determine the values of m, n ∈ $\mathbb N$ for which there exists a surjection between the n- and m-string braid groups of an orientable surface without boundary. This result is essentially based on specific properties of their lower central series, and the proof is completely combinatorial. We provide similar but partial results in the case of orientable surfaces with boundary components and of non-orientable surfaces without boundary. We give also several results about the classification of different representations of surface braid groups in symmetric groups.
In this paper, we study finite semiprimitive permutation groups, that is, groups in which each normal subgroup is transitive or semiregular. These groups have recently been investigated in terms of their abstract structure, in a similar way to the O'Nan–Scott Theorem for primitive groups. Our goal here is to explore aspects of such groups which may be useful in place of precise structural information. We give bounds on the order, base size, minimal degree, fixed point ratio, and chief length of an arbitrary finite semiprimitive group in terms of its degree. To establish these bounds, we study the structure of a finite semiprimitive group that induces the alternating or symmetric group on the set of orbits of an intransitive minimal normal subgroup.
Let $G$ be a finite group with two primitive permutation representations on the sets $\unicode[STIX]{x1D6FA}_{1}$ and $\unicode[STIX]{x1D6FA}_{2}$ and let $\unicode[STIX]{x1D70B}_{1}$ and $\unicode[STIX]{x1D70B}_{2}$ be the corresponding permutation characters. We consider the case in which the set of fixed-point-free elements of $G$ on $\unicode[STIX]{x1D6FA}_{1}$ coincides with the set of fixed-point-free elements of $G$ on $\unicode[STIX]{x1D6FA}_{2}$, that is, for every $g\in G$, $\unicode[STIX]{x1D70B}_{1}(g)=0$ if and only if $\unicode[STIX]{x1D70B}_{2}(g)=0$. We have conjectured in Spiga [‘Permutation characters and fixed-point-free elements in permutation groups’, J. Algebra299(1) (2006), 1–7] that under this hypothesis either $\unicode[STIX]{x1D70B}_{1}=\unicode[STIX]{x1D70B}_{2}$ or one of $\unicode[STIX]{x1D70B}_{1}-\unicode[STIX]{x1D70B}_{2}$ and $\unicode[STIX]{x1D70B}_{2}-\unicode[STIX]{x1D70B}_{1}$ is a genuine character. In this paper we give evidence towards the veracity of this conjecture when the socle of $G$ is a sporadic simple group or an alternating group. In particular, the conjecture is reduced to the case of almost simple groups of Lie type.
A group K is said to be a B-group if every permutation group containing K as a regular subgroup is either imprimitive or 2-transitive. In the second edition of his influential textbook on finite groups, Burnside published a proof that cyclic groups of composite prime-power degree are B-groups. Ten years later, in 1921, he published a proof that every abelian group of composite degree is a B-group. Both proofs are character-theoretic and both have serious flaws. Indeed, the second result is false. In this paper we explain these flaws and prove that every cyclic group of composite order is a B-group, using only Burnside’s character-theoretic methods. We also survey the related literature, prove some new results on B-groups of prime-power order, state two related open problems and present some new computational data.
We prove that the monodromy group of a reduced irreducible square system of general polynomial equations equals the symmetric group. This is a natural first step towards the Galois theory of general systems of polynomial equations, because arbitrary systems split into reduced irreducible ones upon monomial changes of variables. In particular, our result proves the multivariate version of the Abel–Ruffini theorem: the classification of general systems of equations solvable by radicals reduces to the classification of lattice polytopes of mixed volume 4 (which we prove to be finite in every dimension). We also notice that the monodromy of every general system of equations is either symmetric or imprimitive. The proof is based on a new result of independent importance regarding dual defectiveness of systems of equations: the discriminant of a reduced irreducible square system of general polynomial equations is a hypersurface unless the system is linear up to a monomial change of variables.
The famous Burnside–Schur theorem states that every primitive finite permutation group containing a regular cyclic subgroup is either 2-transitive or isomorphic to a subgroup of a 1-dimensional affine group of prime degree. It is known that this theorem can be expressed as a statement on Schur rings over a finite cyclic group. Generalizing the latter, Schur rings are introduced over a finite commutative ring, and an analogue of this statement is proved for them. Also, the finite local commutative rings are characterized in permutation group terms.
A transitive simple subgroup of a finite symmetric group is very rarely contained in a full wreath product in product action. All such simple permutation groups are determined in this paper. This remarkable conclusion is reached after a definition and detailed examination of ‘Cartesian decompositions’ of the permuted set, relating them to certain ‘Cartesian systems of subgroups’. These concepts, and the bijective connections between them, are explored in greater generality, with specific future applications in mind.
A finite permutation group is said to be innately transitive if it contains a transitive minimal normal subgroup. In this paper, we give a characterisation and structure theorem for the finite innately transitive groups, as well as describing those innately transitive groups which preserve a product decomposition. The class of innately transitive groups contains all primitive and quasiprimitive groups.
A complete classification is given of finite primitive permutation groups which contain an abelian regular subgroup. This solves a long-standing open problem in permutation group theory initiated by W. Burnside in 1900.
The paper gives lists of all the primitive permutation groups of squarefree degree. All such groups are either solvable and act on a prime number of points, or are almost simple. Among the almost simple examples, the groups of Lie type have rank at most $2$, or the point stabilizer is a parabolic subgroup.
A permutation group is said to be quasiprimitive if every nontrivial normal subgroup is transitive. Every primitive permutation group is quasiprimitive, but the converse is not true. In this paper we start a project whose goal is to check which of the classical results on finite primitive permutation groups also holds for quasiprimitive ones (possibly with some modifications). The main topics addressed here are bounds on order, minimum degree and base size, as well as groups containing special p-elements. We also pose some problems for further research.
Given an infinite family of finite primitive groups, conditions are found which ensure that almost all the orbitals are not self-paired. If p is a prime number congruent to ±1(mod 10), these conditions apply to the groups P S L (2, p) acting on the cosets of a subgroup isomorphic to A5. In this way, infinitely many vertex-primitive ½-transitive graphs which are not metacirculants are obtained.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.