Let   $R$  be a semiprime ring with center
 $R$  be a semiprime ring with center   $Z\left( R \right)$ . For
 $Z\left( R \right)$ . For   $x,\,y\,\in \,R$ , we denote by
 $x,\,y\,\in \,R$ , we denote by   $\left[ x,\,y \right]\,=\,xy\,-\,yx$  the commutator of
 $\left[ x,\,y \right]\,=\,xy\,-\,yx$  the commutator of   $x$  and
 $x$  and   $y$ . If
 $y$ . If   $\sigma $  is a non-identity automorphism of
 $\sigma $  is a non-identity automorphism of   $R$  such that
 $R$  such that
 1  $$\left[ \left[ \cdot \cdot \cdot \,\left[ \left[ \sigma \left( {{x}^{n0}} \right),\,{{x}^{n1}} \right],\,{{x}^{n2}} \right],\cdot \cdot \cdot\right],\,{{x}^{nk}} \right]\,=\,0$$
 $$\left[ \left[ \cdot \cdot \cdot \,\left[ \left[ \sigma \left( {{x}^{n0}} \right),\,{{x}^{n1}} \right],\,{{x}^{n2}} \right],\cdot \cdot \cdot\right],\,{{x}^{nk}} \right]\,=\,0$$  
for all   $x\,\in \,R$ , where
 $x\,\in \,R$ , where   ${{n}_{0}},\,{{n}_{1}},\,{{n}_{2}},\,...,\,{{n}_{k}}$  are fixed positive integers, then there exists a map
 ${{n}_{0}},\,{{n}_{1}},\,{{n}_{2}},\,...,\,{{n}_{k}}$  are fixed positive integers, then there exists a map   $\mu \,:\,R\,\to \,Z\left( R \right)$  such that
 $\mu \,:\,R\,\to \,Z\left( R \right)$  such that   $\sigma \left( x \right)\,=\,x\,+\,\mu \left( x \right)$  for all
 $\sigma \left( x \right)\,=\,x\,+\,\mu \left( x \right)$  for all   $x\,\in \,R$ . In particular, when
 $x\,\in \,R$ . In particular, when   $R$  is a prime ring,
 $R$  is a prime ring,   $R$  is commutative.
 $R$  is commutative.