We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a non-negative integer n and a ring R with identity, we construct a hereditary abelian model structure on the category of left R-modules where the class of cofibrant objects coincides with $\mathcal{GF}_n(R)$ the class of left R-modules with Gorenstein flat dimension at most n, the class of fibrant objects coincides with $\mathcal{F}_n(R)^\perp$ the right ${\rm Ext}$-orthogonal class of left R-modules with flat dimension at most n, and the class of trivial objects coincides with $\mathcal{PGF}(R)^\perp$ the right ${\rm Ext}$-orthogonal class of PGF left R-modules recently introduced by Šaroch and . The homotopy category of this model structure is triangulated equivalent to the stable category $\underline{\mathcal{GF}(R)\cap\mathcal{C}(R)}$ modulo flat-cotorsion modules and it is compactly generated when R has finite global Gorenstein projective dimension.
The second part of this paper deals with the PGF dimension of modules and rings. Our results suggest that this dimension could serve as an alternative definition of the Gorenstein projective dimension. We show, among other things, that (n-)perfect rings can be characterized in terms of Gorenstein homological dimensions, similar to the classical ones, and the global Gorenstein projective dimension coincides with the global PGF dimension.
For a three-dimensional quantum polynomial algebra
$A=\mathcal {A}(E,\sigma )$
, Artin, Tate, and Van den Bergh showed that A is finite over its center if and only if
$|\sigma |<\infty $
. Moreover, Artin showed that if A is finite over its center and
$E\neq \mathbb P^{2}$
, then A has a fat point module, which plays an important role in noncommutative algebraic geometry; however, the converse is not true in general. In this paper, we will show that if
$E\neq \mathbb P^{2}$
, then A has a fat point module if and only if the quantum projective plane
${\sf Proj}_{\text {nc}} A$
is finite over its center in the sense of this paper if and only if
$|\nu ^{*}\sigma ^{3}|<\infty $
where
$\nu $
is the Nakayama automorphism of A. In particular, we will show that if the second Hessian of E is zero, then A has no fat point module.
We present the concept of cotorsion pairs cut along subcategories of an abelian category. This provides a generalization of complete cotorsion pairs, and represents a general framework to find approximations restricted to certain subcategories. We also exhibit some connections between cut cotorsion pairs and Auslander–Buchweitz approximation theory, by considering relative analogs for Frobenius pairs and Auslander–Buchweitz contexts. Several applications are given in the settings of relative Gorenstein homological algebra, chain complexes, and quasi-coherent sheaves, as well as to characterize some important results on the Finitistic Dimension Conjecture, the existence of right adjoints of quotient functors by Serre subcategories, and the description of cotorsion pairs in triangulated categories as co-t-structures.
In noncommutative algebraic geometry an Artin–Schelter regular (AS-regular) algebra is one of the main interests, and every three-dimensional quadratic AS-regular algebra is a geometric algebra, introduced by Mori, whose point scheme is either
$\mathbb {P}^{2}$
or a cubic curve in
$\mathbb {P}^{2}$
by Artin et al. [‘Some algebras associated to automorphisms of elliptic curves’, in: The Grothendieck Festschrift, Vol. 1, Progress in Mathematics, 86 (Birkhäuser, Basel, 1990), 33–85]. In the preceding paper by the authors Itaba and Matsuno [‘Defining relations of 3-dimensional quadratic AS-regular algebras’, Math. J. Okayama Univ. 63 (2021), 61–86], we determined all possible defining relations for these geometric algebras. However, we did not check their AS-regularity. In this paper, by using twisted superpotentials and twists of superpotentials in the Mori–Smith sense, we check the AS-regularity of geometric algebras whose point schemes are not elliptic curves. For geometric algebras whose point schemes are elliptic curves, we give a simple condition for three-dimensional quadratic AS-regular algebras. As an application, we show that every three-dimensional quadratic AS-regular algebra is graded Morita equivalent to a Calabi–Yau AS-regular algebra.
This is a general study of twisted Calabi–Yau algebras that are
$\mathbb {N}$
-graded and locally finite-dimensional, with the following major results. We prove that a locally finite graded algebra is twisted Calabi–Yau if and only if it is separable modulo its graded radical and satisfies one of several suitable generalizations of the Artin–Schelter regularity property, adapted from the work of Martinez-Villa as well as Minamoto and Mori. We characterize twisted Calabi–Yau algebras of dimension 0 as separable k-algebras, and we similarly characterize graded twisted Calabi–Yau algebras of dimension 1 as tensor algebras of certain invertible bimodules over separable algebras. Finally, we prove that a graded twisted Calabi–Yau algebra of dimension 2 is noetherian if and only if it has finite GK dimension.
Classification of AS-regular algebras is one of the main interests in noncommutative algebraic geometry. We say that a $3$-dimensional quadratic AS-regular algebra is of Type EC if its point scheme is an elliptic curve in $\mathbb {P}^{2}$. In this paper, we give a complete list of geometric pairs and a complete list of twisted superpotentials corresponding to such algebras. As an application, we show that there are only two exceptions up to isomorphism among all $3$-dimensional quadratic AS-regular algebras that cannot be written as a twist of a Calabi–Yau AS-regular algebra by a graded algebra automorphism.
A duality theorem for the singularity category of a finite dimensional Gorenstein algebra is proved. It complements a duality on the category of perfect complexes, discovered by Happel. One of its consequences is an analogue of Serre duality, and the existence of Auslander–Reiten triangles for the $\mathfrak{p}$-local and $\mathfrak{p}$-torsion subcategories of the derived category, for each homogeneous prime ideal $\mathfrak{p}$ arising from the action of a commutative ring via Hochschild cohomology.
Let $k$ be a commutative ring, let ${\mathcal{C}}$ be a small, $k$-linear, Hom-finite, locally bounded category, and let ${\mathcal{B}}$ be a $k$-linear abelian category. We construct a Frobenius exact subcategory ${\mathcal{G}}{\mathcal{P}}({\mathcal{G}}{\mathcal{P}}_{P}({\mathcal{B}}^{{\mathcal{C}}}))$ of the functor category ${\mathcal{B}}^{{\mathcal{C}}}$, and we show that it is a subcategory of the Gorenstein projective objects ${\mathcal{G}}{\mathcal{P}}({\mathcal{B}}^{{\mathcal{C}}})$ in ${\mathcal{B}}^{{\mathcal{C}}}$. Furthermore, we obtain criteria for when ${\mathcal{G}}{\mathcal{P}}({\mathcal{G}}{\mathcal{P}}_{P}({\mathcal{B}}^{{\mathcal{C}}}))={\mathcal{G}}{\mathcal{P}}({\mathcal{B}}^{{\mathcal{C}}})$. We show in examples that this can be used to compute ${\mathcal{G}}{\mathcal{P}}({\mathcal{B}}^{{\mathcal{C}}})$ explicitly.
We introduce the notion of a perfect path for a monomial algebra. We classify indecomposable non-projective Gorenstein-projective modules over the given monomial algebra via perfect paths. We apply the classification to a quadratic monomial algebra and describe explicitly the stable category of its Gorenstein-projective modules.
Let $R$ be a two-sided Noetherian ring, and let $M$ be a nilpotent $R$-bimodule, which is finitely generated on both sides. We study Gorenstein homological properties of the tensor ring $T_{R}(M)$. Under certain conditions, the ring $R$ is Gorenstein if and only if so is $T_{R}(M)$. We characterize Gorenstein projective $T_{R}(M)$-modules in terms of $R$-modules.
We classify all non-affine Hopf algebras H over an algebraically closed field k of characteristic zero that are integral domains of Gelfand–Kirillov dimension two and satisfy the condition Ext1H(k, k) ≠ 0. The affine ones were classified by the authors in 2010 (Goodearl and Zhang, J. Algebra324 (2010), 3131–3168).
We show that Artin–Schelter regularity of a $\mathbb{Z}$-graded algebra can be examined by its associated $\mathbb{Z}$r-graded algebra. We prove that there is exactly one class of four-dimensional Artin–Schelter regular algebras with two generators of degree one in the Jordan type. This class is strongly noetherian, Auslander regular, and Cohen–Macaulay. Their automorphisms and point modules are described.
We show that under some conditions a Gorenstein ring $R$ satisfies the Generalized Auslander–Reiten conjecture if and only if $R\left[ x \right]$ does. When $R$ is a local ring we prove the same result for some localizations of $R\left[ x \right]$.
Let $\mathfrak{F}$ be a locally compact nonarchimedean field with residue characteristic $p$, and let $\mathrm{G} $ be the group of $\mathfrak{F}$-rational points of a connected split reductive group over $\mathfrak{F}$. For $k$ an arbitrary field of any characteristic, we study the homological properties of the Iwahori–Hecke $k$-algebra ${\mathrm{H} }^{\prime } $ and of the pro-$p$ Iwahori–Hecke $k$-algebra $\mathrm{H} $ of $\mathrm{G} $. We prove that both of these algebras are Gorenstein rings with self-injective dimension bounded above by the rank of $\mathrm{G} $. If $\mathrm{G} $ is semisimple, we also show that this upper bound is sharp, that both $\mathrm{H} $ and ${\mathrm{H} }^{\prime } $ are Auslander–Gorenstein, and that there is a duality functor on the finite length modules of $\mathrm{H} $ (respectively ${\mathrm{H} }^{\prime } $). We obtain the analogous Gorenstein and Auslander–Gorenstein properties for the graded rings associated to $\mathrm{H} $ and ${\mathrm{H} }^{\prime } $.
When $k$ has characteristic $p$, we prove that in ‘most’ cases $\mathrm{H} $ and ${\mathrm{H} }^{\prime } $ have infinite global dimension. In particular, we deduce that the category of smooth $k$-representations of $\mathrm{G} = {\mathrm{PGL} }_{2} ({ \mathbb{Q} }_{p} )$ generated by their invariant vectors under the pro-$p$ Iwahori subgroup has infinite global dimension (at least if $k$ is algebraically closed).
A brief survey of some aspects of noetherian Hopf algebras is given, concentrating on structure, homology, and classification, and accompanied by a panoply of open problems.
Classification of AS-regular algebras is one of the major projects in non-commutative algebraic geometry. In this paper, we will study when given AS-regular algebras are graded Morita equivalent. In particular, for every geometric AS-regular algebra A, we define another graded algebra A, and show that if two geometric AS-regular algebras A and A' are graded Morita equivalent, then A and A' are isomorphic as graded algebras. We also show that the converse holds in many three-dimensional cases. As applications, we apply our results to Frobenius Koszul algebras and Beilinson algebras.
A commutative local Cohen–Macaulay ring $R$ of finite Cohen–Macaulay type is known to be an isolated singularity; that is, $\text{Spec}(R)\backslash \{m\}$ is smooth. This paper proves a non-commutative analogue. Namely, if $A$ is a (non-commutative) graded Artin–Schelter Cohen–Macaulay algebra which is fully bounded Noetherian and has finite Cohen–Macaulay type, then the non-commutative projective scheme determined by $A$ is smooth.
Let $A$ be a graded algebra finitely generated in degree 1 over a field $k$. Point modules over $A$ introduced by Artin, Tate and Van den Bergh play an important role in studying $A$ in noncommutative algebraic geometry. In this paper, we define a dual notion of point module in terms of Koszul duality, which we call a co-point module. Using co-point modules, we will construct counter-examples to the following condition due to Auslander: for every finitely generated right module $\pi$ over a ring $R$, there is a natural number $n_M\in {\mathbb N}$ such that, for any finitely generated right module $N$ over $R$, ${\rm Ext}^i_R(M, N)=0$ for all $i\gg 0$ implies ${\rm Ext}^i_R(M, N)=0$ for all $i>n_M$.
Let R be the exterior algebra in n + 1 variables over a field K. We study the Auslander–Reiten quiver of the category of linear R-modules, and of certain subcategories of the category of coherent sheaves over Pn. If n > 1, we prove that up to shift, all but one of the connected components of these Auslander–Reiten quivers are translation subquivers of a ${\bf Z} A_{\infty}$-type quiver. We also study locally free sheaves over the projective n-space Pn for n > 1 and we show that each connected component contains at most one indecomposable locally free sheaf of rank less than n. Finally, using results from the theory of finite-dimensional algebras, we construct a family of indecomposable locally free sheaves of arbitrary large ranks, where the ranks can be computed using the Chebysheff polynomials of the second kind.
For a locally compact group $G$, the convolution product on the space $N({{L}^{p}}\ (G))$ of nuclear operators was defined by Neufang [11]. We study homological properties of the convolution algebra $N({{L}^{p}}\ (G))$ and relate them to some properties of the group $G$, such as compactness, finiteness, discreteness, and amenability.