We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
If E is a graph and K is a field, we consider an ideal I of the Leavitt path algebra $L_K(E)$ of E over K. We describe the admissible pair corresponding to the smallest graded ideal which contains I where the grading in question is the natural grading of $L_K(E)$ by ${\mathbb {Z}}$. Using this description, we show that the right and the left annihilators of I are equal (which may be somewhat surprising given that I may not be self-adjoint). In particular, we establish that both annihilators correspond to the same admissible pair and its description produces the characterisation from the title. Then, we turn to the property that the right (equivalently left) annihilator of any ideal is a direct summand and recall that a unital ring with this property is said to be quasi-Baer. We exhibit a condition on E which is equivalent to unital $L_K(E)$ having this property.
We show that every graded ideal of a Leavitt path algebra is graded isomorphic to a Leavitt path algebra. It is known that a graded ideal I of a Leavitt path algebra is isomorphic to the Leavitt path algebra of a graph, known as the generalised hedgehog graph, which is defined based on certain sets of vertices uniquely determined by I. However, this isomorphism may not be graded. We show that replacing the short ‘spines’ of the generalised hedgehog graph with possibly fewer, but then necessarily longer spines, we obtain a graph (which we call the porcupine graph) whose Leavitt path algebra is graded isomorphic to I. Our proof can be adapted to show that, for every closed gauge-invariant ideal J of a graph
$C^*$
-algebra, there is a gauge-invariant
$*$
-isomorphism mapping the graph
$C^*$
-algebra of the porcupine graph of J onto
$J.$
Let K be a field of arbitrary characteristic,
$${\cal A}$$
be a commutative K-algebra which is a domain of essentially finite type (e.g., the algebra of functions on an irreducible affine algebraic variety),
$${a_r}$$
be its Jacobian ideal, and
$${\cal D}\left( {\cal A} \right)$$
be the algebra of differential operators on the algebra
$${\cal A}$$
. The aim of the paper is to give a simplicity criterion for the algebra
$${\cal D}\left( {\cal A} \right)$$
: the algebra
$${\cal D}\left( {\cal A} \right)$$
is simple iff
$${\cal D}\left( {\cal A} \right)a_r^i{\cal D}\left( {\cal A} \right) = {\cal D}\left( {\cal A} \right)$$
for all i ≥ 1 provided the field K is a perfect field. Furthermore, a simplicity criterion is given for the algebra
$${\cal D}\left( R \right)$$
of differential operators on an arbitrary commutative algebra R over an arbitrary field. This gives an answer to an old question to find a simplicity criterion for algebras of differential operators.
Let k be a finite field of characteristic p, and G a compact p-adic analytic group. Write kG for the completed group ring of G over k. In this paper, we describe the structure of the ring kG/P, where P is a minimal prime ideal of kG. We give an explicit isomorphism between kG/P and a matrix ring with coefficients in the ring
${(k'G')_\alpha }$
, where
$k'/k$
is a finite field extension,
$G'$
is a large subquotient of G with no finite normal subgroups, and (–)α is a “twisting” operation that preserves many desirable properties of the ring structure. We demonstrate the usefulness of this isomorphism by studying the correspondence induced between certain ideals of kG and those of
${(k'G')_\alpha }$
, and showing that this preserves many useful “group-theoretic” properties of ideals, in particular almost-faithfulness and control by a closed normal subgroup.
Let R = K[x, σ] be the skew polynomial ring over a field K, where σ is an automorphism of K of finite order. We show that prime elements in R correspond to completely prime one-sided ideals – a notion introduced by Reyes in 2010. This extends the natural correspondence between prime elements and prime ideals in commutative polynomial rings.
Let 𝔟 be the Borel subalgebra of the Lie algebra 𝔰𝔩2 and V2 be the simple two-dimensional 𝔰𝔩2-module. For the universal enveloping algebra $\[{\cal A}: = U(\gb \ltimes {V_2})\]$ of the semi-direct product 𝔟⋉V2 of Lie algebras, the prime, primitive and maximal spectra are classified. Please approve edit to the sentence “The sets of completely prime…”.The sets of completely prime ideals of $\[{\cal A}\]$ are described. The simple unfaithful $\[{\cal A}\]$-modules are classified and an explicit description of all prime factor algebras of $\[{\cal A}\]$ is given. The following classes of simple U(𝔟⋉V2)-modules are classified: the Whittaker modules, the 𝕂[X]-torsion modules and the 𝕂[E]-torsion modules.
A ring is called right annelidan if the right annihilator of any subset of the ring is comparable with every other right ideal. In this paper we develop the connections between this class of rings and the classes of right Bézout rings and rings whose right ideals form a distributive lattice. We obtain results on localization of right annelidan rings at prime ideals, chain conditions that entail left-right symmetry of the annelidan condition, and construction of completely prime ideals.
A theorem of Burgess and Stephenson asserts that in an exchange ring with central idempotents, every maximal left ideal is also a right ideal. The proof uses sheaf-theoretic techniques. In this paper, we give a short elementary proof of this important theorem.
The prime, completely prime, maximal, and primitive spectra are classified for the universal enveloping algebra of the Schrödinger algebra. The explicit generators are given for all of these ideals. A counterexample is constructed to the conjecture of Cheng and Zhang about nonexistence of simple singular Whittaker modules for the Schrödinger algebra (and all such modules are classified). It is proved that the conjecture holds ‘generically’.
We obtain a complete structural characterization of Cohn–Leavitt algebras over no-exit objects as graded involutive algebras. Corollaries of this result include graph-theoretic conditions characterizing when a Leavitt path algebra is a directed union of (graded) matricial algebras over the underlying field and over the algebra of Laurent polynomials and when the monoid of isomorphism classes of finitely generated projective modules is atomic and cancelative. We introduce the nonunital generalizations of graded analogs of noetherian and artinian rings, graded locally noetherian and graded locally artinian rings, and characterize graded locally noetherian and graded locally artinian Leavitt path algebras without any restriction on the cardinality of the graph. As a consequence, we relax the assumptions of the Abrams–Aranda–Perera–Siles characterization of locally noetherian and locally artinian Leavitt path algebras.
If $T$ is any finite higher commutator in an associative ring $R$, for example, $T= [[R, R] , [R, R] ] $, and if $T$ has minimal cardinality so that the ideal generated by $T$ is infinite, then $T$ is in the centre of $R$ and ${T}^{2} = 0$. Also, if $T$ is any finite, higher commutator containing no nonzero nilpotent element then $T$ generates a finite ideal.
Real ideals of the ring ℜL of real-valued continuous functions on a completely regular frame L are characterized in terms of cozero elements, in the manner of the classical case of the rings C(X). As an application, we show that L is realcompact if and only if every free maximal ideal of ℜL is hyper-real—which is the precise translation of how Hewitt defined realcompact spaces, albeit under a different appellation. We also obtain a frame version of Mrówka’s theorem that characterizes realcompact spaces.
Jacobson said a a right ideal would be called bounded if it contained a non-zero ideal, and Faith said a ring would be called strongly right bounded if every non-zero right ideal were bounded. In this paper we introduce a condition that is a generalisation of strongly bounded rings and insertion-of-factors-property (IFP) rings, calling a ring strongly right AB if every non-zero right annihilator is bounded. We first observe the structure of strongly right AB rings by analysing minimal non-commutative strongly right AB rings up to isomorphism. We study properties of strongly right AB rings, finding conditions for strongly right AB rings to be reduced or strongly right bounded. Relating to Ramamurthi's question (i.e. Are right and left SF rings von Neumann regular?), we show that a ring is strongly regular if and only if it is strongly right AB and right SF, from which we may generalise several known results. We also construct more examples of strongly right AB rings and counterexamples to several naturally raised situations in the process.
It is proved that every abelian VNL-ring is an SVNL-ring, which gives a positive answer to a question of Osba et al. [7]. Some characterizations of duo VNL-rings are given and some main results of Osba et al. [7] on commutative VNL-rings are extended to right duo VNL-rings and even abelian GVNL-rings.
It is determined when there exists a minimal essential ideal, or minimal essential left ideal, in the incidence algebra of a locally finite partially ordered set defined over a commutative ring. When such an ideal exists, it is described.
In this note, we obtain, in a rather easy way, examples of stably free non-free right ideals. We also give an example of a stably free non-free two-sided ideal in a maximal ℤ-order. These are obtained as applications of a theorem giving necessary and sufficient conditions for H/nH to be a complete 2 x 2 matrix ring, when H is a generalised quaternion ring.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.