We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The walk matrix associated to an $n\times n$ integer matrix $\mathbf{X}$ and an integer vector $b$ is defined by ${\mathbf{W}} \,:\!=\, (b,{\mathbf{X}} b,\ldots, {\mathbf{X}}^{n-1}b)$. We study limiting laws for the cokernel of $\mathbf{W}$ in the scenario where $\mathbf{X}$ is a random matrix with independent entries and $b$ is deterministic. Our first main result provides a formula for the distribution of the $p^m$-torsion part of the cokernel, as a group, when $\mathbf{X}$ has independent entries from a specific distribution. The second main result relaxes the distributional assumption and concerns the ${\mathbb{Z}}[x]$-module structure.
The motivation for this work arises from an open problem in spectral graph theory, which asks to show that random graphs are often determined up to isomorphism by their (generalised) spectrum. Sufficient conditions for generalised spectral determinacy can, namely, be stated in terms of the cokernel of a walk matrix. Extensions of our results could potentially be used to determine how often those conditions are satisfied. Some remaining challenges for such extensions are outlined in the paper.
We derive a sufficient condition for a sparse random matrix with given numbers of non-zero entries in the rows and columns having full row rank. The result covers both matrices over finite fields with independent non-zero entries and $\{0,1\}$-matrices over the rationals. The sufficient condition is generally necessary as well.
We establish the asymptotic expansion in $\beta $ matrix models with a confining, off-critical potential in the regime where the support of the equilibrium measure is a finite union of segments. We first address the case where the filling fractions of these segments are fixed and show the existence of a $\frac {1}{N}$ expansion. We then study the asymptotics of the sum over the filling fractions to obtain the full asymptotic expansion for the initial problem in the multi-cut regime. In particular, we identify the fluctuations of the linear statistics and show that they are approximated in law by the sum of a Gaussian random variable and an independent Gaussian discrete random variable with oscillating center. Fluctuations of filling fractions are also described by an oscillating discrete Gaussian random variable. We apply our results to study the all-order small dispersion asymptotics of solutions of the Toda chain associated with the one Hermitian matrix model ($\beta = 2$) as well as orthogonal ($\beta = 1$) and skew-orthogonal ($\beta = 4$) polynomials outside the bulk.
Let A be an $n \times n$ symmetric matrix with $(A_{i,j})_{i\leqslant j}$ independent and identically distributed according to a subgaussian distribution. We show that
where $\sigma _{\min }(A)$ denotes the least singular value of A and the constants $C,c>0 $ depend only on the distribution of the entries of A. This result confirms the folklore conjecture on the lower tail of the least singular value of such matrices and is best possible up to the dependence of the constants on the distribution of $A_{i,j}$. Along the way, we prove that the probability that A has a repeated eigenvalue is $e^{-\Omega (n)}$, thus confirming a conjecture of Nguyen, Tao and Vu [Probab. Theory Relat. Fields 167 (2017), 777–816].
We find closed formulas for arbitrarily high mixed moments of characteristic polynomials of the Alternative Circular Unitary Ensemble, as well as closed formulas for the averages of ratios of characteristic polynomials in this ensemble. A comparison is made to analogous results for the Circular Unitary Ensemble. Both moments and ratios are studied via symmetric function theory and a general formula of Borodin-Olshanski-Strahov.
For a
$k$
-uniform hypergraph
$\mathcal{H}$
on vertex set
$\{1, \ldots, n\}$
we associate a particular signed incidence matrix
$M(\mathcal{H})$
over the integers. For
$\mathcal{H} \sim \mathcal{H}_k(n, p)$
an Erdős–Rényi random
$k$
-uniform hypergraph,
${\mathrm{coker}}(M(\mathcal{H}))$
is then a model for random abelian groups. Motivated by conjectures from the study of random simplicial complexes we show that for
$p = \omega (1/n^{k - 1})$
,
${\mathrm{coker}}(M(\mathcal{H}))$
is torsion-free.
We prove a general local law for Wigner matrices that optimally handles observables of arbitrary rank and thus unifies the well-known averaged and isotropic local laws. As an application, we prove a central limit theorem in quantum unique ergodicity (QUE): that is, we show that the quadratic forms of a general deterministic matrix A on the bulk eigenvectors of a Wigner matrix have approximately Gaussian fluctuation. For the bulk spectrum, we thus generalise our previous result [17] as valid for test matrices A of large rank as well as the result of Benigni and Lopatto [7] as valid for specific small-rank observables.
We calculate the moments of the characteristic polynomials of
$N\times N$
matrices drawn from the Hermitian ensembles of Random Matrix Theory, at a position t in the bulk of the spectrum, as a series expansion in powers of t. We focus in particular on the Gaussian Unitary Ensemble. We employ a novel approach to calculate the coefficients in this series expansion of the moments, appropriately scaled. These coefficients are polynomials in N. They therefore grow as
$N\to\infty$
, meaning that in this limit the radius of convergence of the series expansion tends to zero. This is related to oscillations as t varies that are increasingly rapid as N grows. We show that the
$N\to\infty$
asymptotics of the moments can be derived from this expansion when
$t=0$
. When
$t\ne 0$
we observe a surprising cancellation when the expansion coefficients for N and
$N+1$
are formally averaged: this procedure removes all of the N-dependent terms leading to values that coincide with those expected on the basis of previously established asymptotic formulae for the moments. We obtain as well formulae for the expectation values of products of the secular coefficients.
Conditional on the extended Riemann hypothesis, we show that with high probability, the characteristic polynomial of a random symmetric
$\{\pm 1\}$
-matrix is irreducible. This addresses a question raised by Eberhard in recent work. The main innovation in our work is establishing sharp estimates regarding the rank distribution of symmetric random
$\{\pm 1\}$
-matrices over
$\mathbb{F}_p$
for primes
$2 < p \leq \exp(O(n^{1/4}))$
. Previously, such estimates were available only for
$p = o(n^{1/8})$
. At the heart of our proof is a way to combine multiple inverse Littlewood–Offord-type results to control the contribution to singularity-type events of vectors in
$\mathbb{F}_p^{n}$
with anticoncentration at least
$1/p + \Omega(1/p^2)$
. Previously, inverse Littlewood–Offord-type results only allowed control over vectors with anticoncentration at least
$C/p$
for some large constant
$C > 1$
.
We investigate the concept of orbital free entropy from the viewpoint of the matrix liberation process. We will show that many basic questions around the definition of orbital free entropy are reduced to the question of full large deviation principle for the matrix liberation process. We will also obtain a large deviation upper bound for a certain family of random matrices that is essential to define the orbital free entropy. The resulting rate function is made up into a new approach to free mutual information.
We show that a nearly square independent and identically distributed random integral matrix is surjective over the integral lattice with very high probability. This answers a question by Koplewitz [6]. Our result extends to sparse matrices as well as to matrices of dependent entries.
We show that the partial transposes of complex Wishart random matrices are asymptotically free. We also investigate regimes where the number of blocks is fixed but the size of the blocks increases. This gives an example where the partial transpose produces freeness at the operator level. Finally, we investigate the case of real Wishart matrices.
For any family of $N\,\times \,N$ random matrices
${{\left( {{\text{A}}_{k}} \right)}_{k\in K}}$
that is invariant, in law, under unitary conjugation, we give general sufficient conditions for central limit theorems for random variables of the type
$\text{Tr}\left( {{\text{A}}_{k}}\text{M} \right)$, where the matrix $\text{M}$ is deterministic (such random variables include, for example, the normalized matrix entries of ${{\text{A}}_{k}}$). A consequence is the asymptotic independence of the projection of the matrices ${{\text{A}}_{k}}$ onto the subspace of null trace matrices from their projections onto the orthogonal of this subspace. These results are used to study the asymptotic behavior of the outliers of a spiked elliptic random matrix. More precisely, we show that the fluctuations of these outliers around their limits can have various rates of convergence, depending on the Jordan Canonical Form of the additive perturbation. Also, some correlations can arise between outliers at a macroscopic distance from each other.These phenomena have already been observed with random matrices from the Single Ring Theorem.
This paper presents a parallel algorithm for finding the smallest eigenvalue of a family of Hankel matrices that are ill-conditioned. Such matrices arise in random matrix theory and require the use of extremely high precision arithmetic. Surprisingly, we find that a group of commonly-used approaches that are designed for high efficiency are actually less efficient than a direct approach for this class of matrices. We then develop a parallel implementation of the algorithm that takes into account the unusually high cost of individual arithmetic operations. Our approach combines message passing and shared memory, achieving near-perfect scalability and high tolerance for network latency. We are thus able to find solutions for much larger matrices than previously possible, with the potential for extending this work to systems with greater levels of parallelism. The contributions of this work are in three areas: determination that a direct algorithm based on the secant method is more effective when extreme fixed-point precision is required than are the algorithms more typically used in parallel floating-point computations; the particular mix of optimizations required for extreme precision large matrix operations on a modern multi-core cluster, and the numerical results themselves.
We study systems of $n$ points in the Euclidean space of dimension $d\geqslant 1$ interacting via a Riesz kernel $|x|^{-s}$ and confined by an external potential, in the regime where $d-2\leqslant s<d$. We also treat the case of logarithmic interactions in dimensions 1 and 2. Our study includes and retrieves all cases previously studied in Sandier and Serfaty [2D Coulomb gases and the renormalized energy, Ann. Probab. (to appear); 1D log gases and the renormalized energy: crystallization at vanishing temperature (2013)] and Rougerie and Serfaty [Higher dimensional Coulomb gases and renormalized energy functionals, Comm. Pure Appl. Math. (to appear)]. Our approach is based on the Caffarelli–Silvestre extension formula, which allows one to view the Riesz kernel as the kernel of an (inhomogeneous) local operator in the extended space $\mathbb{R}^{d+1}$.
As $n\rightarrow \infty$, we exhibit a next to leading order term in $n^{1+s/d}$ in the asymptotic expansion of the total energy of the system, where the constant term in factor of $n^{1+s/d}$ depends on the microscopic arrangement of the points and is expressed in terms of a ‘renormalized energy’. This new object is expected to penalize the disorder of an infinite set of points in whole space, and to be minimized by Bravais lattice (or crystalline) configurations. We give applications to the statistical mechanics in the case where temperature is added to the system, and identify an expected ‘crystallization regime’. We also obtain a result of separation of the points for minimizers of the energy.
Hurwitz numbers count branched covers of the Riemann sphere with specified ramification data, or equivalently, transitive permutation factorizations in the symmetric group with specified cycle types. Monotone Hurwitz numbers count a restricted subset of these branched covers related to the expansion of complete symmetric functions in the Jucys–Murphy elements, and have arisen in recent work on the the asymptotic expansion of the Harish-Chandra–Itzykson–Zuber integral. In this paper we begin a detailed study of monotone Hurwitz numbers. We prove two results that are reminiscent of those for classical Hurwitz numbers. The first is the monotone join-cut equation, a partial differential equation with initial conditions that characterizes the generating function for monotone Hurwitz numbers in arbitrary genus. The second is our main result, in which we give an explicit formula for monotone Hurwitz numbers in genus zero.
The critical paths of a max-plus linear system with noise are random variables. In this paper we introduce the edge criticalities which measure how often the critical paths traverse each edge in the precedence graph. We also present the parallel path approximation, a novel method for approximating these new statistics as well as the previously studied max-plus exponent. We show that, for low amplitude noise, the critical paths spend most of their time traversing the deterministic maximally weighted cycle and that, as the noise amplitude is increased, the critical paths become more random and their distribution over the edges in the precedence graph approaches a highly uniform measure of maximal entropy.
Continuous-time discrete-state random Markov chains generated by a random linear differential equation with a random tridiagonal matrix are shown to have a random attractor consisting of singleton subsets, essentially a random path, in the simplex of probability vectors. The proof uses comparison theorems for Carathéodory random differential equations and the fact that the linear cocycle generated by the Markov chain is a uniformly contractive mapping of the positive cone into itself with respect to the Hilbert projective metric. It does not involve probabilistic properties of the sample path and is thus equally valid in the nonautonomous deterministic context of Markov chains with, say, periodically varying transition probabilities, in which case the attractor is a periodic path.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.