We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The deepest arithmetic invariants attached to an algebraic variety defined over a number field $F$ are conjecturally captured by the integral part of its motivic cohomology. There are essentially two ways of defining it when $X$ is a smooth projective variety: one is via the $K$-theory of a regular integral model, the other is through its $\ell$-adic realization. Both approaches are conjectured to coincide. This paper initiates the study of motivic cohomology for global fields of positive characteristic, hereafter named $A$-motivic cohomology, where classical mixed motives are replaced by mixed Anderson $A$-motives. Our main objective is to set the definitions of the integral part and the good$\ell$-adic part of the $A$-motivic cohomology using Gardeyn's notion of maximal models as the analogue of regular integral models of varieties. Our main result states that the integral part is contained in the good$\ell$-adic part. As opposed to what is expected in the number field setting, we show that the two approaches do not match in general. We conclude this work by introducing the submodule of regulated extensions of mixed Anderson $A$-motives, for which we expect the two approaches to match, and solve some particular cases of this expectation.
We prove that the $p^\infty$-torsion of the transcendental Brauer group of an abelian variety over a finitely generated field of characteristic $p>0$ is bounded. This answers a (variant of a) question asked by Skorobogatov and Zarhin for abelian varieties. To do this, we prove a ‘flat Tate conjecture’ for divisors. We also study other geometric Galois-invariant $p^\infty$-torsion classes of the Brauer group which are not in the transcendental Brauer group. These classes, in contrast with our main theorem, can be infinitely $p$-divisible. We explain how the existence of these $p$-divisible towers is naturally related to the failure of surjectivity of specialisation morphisms of Néron–Severi groups in characteristic $p$.
We prove analogues of Schur’s lemma for endomorphisms of extensions in Tannakian categories. More precisely, let $\mathbf {T}$ be a neutral Tannakian category over a field of characteristic zero. Let E be an extension of A by B in $\mathbf {T}$. We consider conditions under which every endomorphism of E that stabilises B induces a scalar map on $A\oplus B$. We give a result in this direction in the general setting of arbitrary $\mathbf {T}$ and E, and then a stronger result when $\mathbf {T}$ is filtered and the associated graded objects to A and B satisfy some conditions. We also discuss the sharpness of the results.
Structures where we have both a contravariant (pullback) and a covariant (pushforward) functoriality that satisfy base change can be encoded by functors out of ($\infty$-)categories of spans (or correspondences). In this paper, we study the more complicated setup where we have two pushforwards (an ‘additive’ and a ‘multiplicative’ one), satisfying a distributivity relation. Such structures can be described in terms of bispans (or polynomial diagrams). We show that there exist $(\infty,2)$-categories of bispans, characterized by a universal property: they corepresent functors out of $\infty$-categories of spans where the pullbacks have left adjoints and certain canonical 2-morphisms (encoding base change and distributivity) are invertible. This gives a universal way to obtain functors from bispans, which amounts to upgrading ‘monoid-like’ structures to ‘ring-like’ ones. For example, symmetric monoidal $\infty$-categories can be described as product-preserving functors from spans of finite sets, and if the tensor product is compatible with finite coproducts our universal property gives the canonical semiring structure using the coproduct and tensor product. More interestingly, we encode the additive and multiplicative transfers on equivariant spectra as a functor from bispans in finite $G$-sets, extend the norms for finite étale maps in motivic spectra to a functor from certain bispans in schemes, and make $\mathrm {Perf}(X)$ for $X$ a spectral Deligne–Mumford stack a functor of bispans using a multiplicative pushforward for finite étale maps in addition to the usual pullback and pushforward maps. Combining this with the polynomial functoriality of $K$-theory constructed by Barwick, Glasman, Mathew, and Nikolaus, we obtain norms on algebraic $K$-theory spectra.
We observe that, in the eta-periodic motivic stable homotopy category, odd rank vector bundles behave to some extent as if they had a nowhere vanishing section. We discuss some consequences concerning $\operatorname {\mathrm {SL}}^c$-orientations of motivic ring spectra and the étale classifying spaces of certain algebraic groups. In particular, we compute the classifying spaces of diagonalisable groups in the eta-periodic motivic stable homotopy category.
In this note, we prove that the moduli stack of vector bundles on a curve with a fixed determinant is ${\mathbb A}^1$-connected. We obtain this result by classifying vector bundles on a curve up to ${\mathbb A}^1$-concordance. Consequently, we classify ${\mathbb P}^n$-bundles on a curve up to ${\mathbb A}^1$-weak equivalence, extending a result in [3] of Asok-Morel. We also give an explicit example of a variety which is ${\mathbb A}^1$-h-cobordant to a projective bundle over ${\mathbb P}^2$ but does not have the structure of a projective bundle over ${\mathbb P}^2$, thus answering a question of Asok-Kebekus-Wendt [2].
We connect two developments that aim to extend Voevodsky's theory of motives over a field in such a way as to encompass non-$\mathbf {A}^1$-invariant phenomena. One is theory of reciprocity sheaves introduced by Kahn, Saito and Yamazaki. The other is theory of the triangulated category $\operatorname {\mathbf {logDM}}^{{\operatorname {eff}}}$ of logarithmic motives launched by Binda, Park and Østvær. We prove that the Nisnevich cohomology of reciprocity sheaves is representable in $\operatorname {\mathbf {logDM}}^{{\operatorname {eff}}}$.
The primary goal of this paper is to identify syntomic complexes with the p-adic étale Tate twists of Geisser–Sato–Schneider on regular p-torsion-free schemes. Our methods apply naturally to a broader class of schemes that we call ‘F-smooth’. The F-smoothness of regular schemes leads to new results on the absolute prismatic cohomology of regular schemes.
We define cohomological complexes of locally compact abelian groups associated with varieties over p-adic fields and prove a duality theorem under some assumption. Our duality takes the form of Pontryagin duality between locally compact motivic cohomology groups.
We offer a systematic study of rigid analytic motives over general rigid analytic spaces, and we develop their six-functor formalism. A key ingredient is an extended proper base change theorem that we are able to justify by reducing to the case of algebraic motives. In fact, more generally, we develop a powerful technique for reducing questions about rigid analytic motives to questions about algebraic motives, which is likely to be useful in other contexts as well. We pay special attention to establishing our results without noetherianity assumptions on rigid analytic spaces. This is indeed possible using Raynaud’s approach to rigid analytic geometry.
For a subring $R$ of the rational numbers, we study $R$-localization functors in the local homotopy theory of simplicial presheaves on a small site and then in ${\mathbb {A}}^1$-homotopy theory. To this end, we introduce and analyze two notions of nilpotence for spaces in ${\mathbb {A}}^1$-homotopy theory, paying attention to future applications for vector bundles. We show that $R$-localization behaves in a controlled fashion for the nilpotent spaces we consider. We show that the classifying space $BGL_n$ is ${\mathbb {A}}^1$-nilpotent when $n$ is odd, and analyze the (more complicated) situation where $n$ is even as well. We establish analogs of various classical results about rationalization in the context of ${\mathbb {A}}^1$-homotopy theory: if $-1$ is a sum of squares in the base field, ${\mathbb {A}}^n \,{\setminus}\, 0$ is rationally equivalent to a suitable motivic Eilenberg–Mac Lane space, and the special linear group decomposes as a product of motivic spheres.
We prove an extension of the Kato–Saito unramified class field theory for smooth projective schemes over a finite field to a class of normal projective schemes. As an application, we obtain Bloch’s formula for the Chow groups of $0$-cycles on such schemes. We identify the Chow group of $0$-cycles on a normal projective scheme over an algebraically closed field to the Suslin homology of its regular locus. Our final result is a Roitman torsion theorem for smooth quasiprojective schemes over algebraically closed fields. This completes the missing p-part in the torsion theorem of Spieß and Szamuely.
For an infinity of number rings we express stable motivic invariants in terms of topological data determined by the complex numbers, the real numbers and finite fields. We use this to extend Morel’s identification of the endomorphism ring of the motivic sphere with the Grothendieck–Witt ring of quadratic forms to deeper base schemes.
We establish, in the setting of equivariant motivic homotopy theory for a finite group, a version of tom Dieck’s splitting theorem for the fixed points of a suspension spectrum. Along the way we establish structural results and constructions for equivariant motivic homotopy theory of independent interest. This includes geometric fixed-point functors and the motivic Adams isomorphism.
We establish a kind of ‘degree
$0$
Freudenthal
${\mathbb {G}_m}$
-suspension theorem’ in motivic homotopy theory. From this we deduce results about the conservativity of the
$\mathbb P^1$
-stabilization functor.
In order to establish these results, we show how to compute certain pullbacks in the cohomology of a strictly homotopy-invariant sheaf in terms of the Rost–Schmid complex. This establishes the main conjecture of [2], which easily implies the aforementioned results.
We equate various Euler classes of algebraic vector bundles, including those of [12] and one suggested by M. J. Hopkins, A. Raksit, and J.-P. Serre. We establish integrality results for this Euler class and give formulas for local indices at isolated zeros, both in terms of the six-functors formalism of coherent sheaves and as an explicit recipe in the commutative algebra of Scheja and Storch. As an application, we compute the Euler classes enriched in bilinear forms associated to arithmetic counts of d-planes on complete intersections in
$\mathbb P^n$
in terms of topological Euler numbers over
$\mathbb {R}$
and
$\mathbb {C}$
.
The goal of this article is to extend the work of Voevodsky and Morel on the homotopy t-structure on the category of motivic complexes to the context of motives for logarithmic schemes. To do so, we prove an analogue of Morel’s connectivity theorem and show a purity statement for
$({\mathbf {P}}^1, \infty )$
-local complexes of sheaves with log transfers. The homotopy t-structure on
${\operatorname {\mathbf {logDM}^{eff}}}(k)$
is proved to be compatible with Voevodsky’s t-structure; that is, we show that the comparison functor
$R^{{\overline {\square }}}\omega ^*\colon {\operatorname {\mathbf {DM}^{eff}}}(k)\to {\operatorname {\mathbf {logDM}^{eff}}}(k)$
is t-exact. The heart of the homotopy t-structure on
${\operatorname {\mathbf {logDM}^{eff}}}(k)$
is the Grothendieck abelian category of strictly cube-invariant sheaves with log transfers: we use it to build a new version of the category of reciprocity sheaves in the style of Kahn-Saito-Yamazaki and Rülling.
We give an arithmetic count of the lines on a smooth cubic surface over an arbitrary field $k$, generalizing the counts that over ${\mathbf {C}}$ there are $27$ lines, and over ${\mathbf {R}}$ the number of hyperbolic lines minus the number of elliptic lines is $3$. In general, the lines are defined over a field extension $L$ and have an associated arithmetic type $\alpha$ in $L^*/(L^*)^2$. There is an equality in the Grothendieck–Witt group $\operatorname {GW}(k)$ of $k$,
where $\operatorname {Tr}_{L/k}$ denotes the trace $\operatorname {GW}(L) \to \operatorname {GW}(k)$. Taking the rank and signature recovers the results over ${\mathbf {C}}$ and ${\mathbf {R}}$. To do this, we develop an elementary theory of the Euler number in $\mathbf {A}^1$-homotopy theory for algebraic vector bundles. We expect that further arithmetic counts generalizing enumerative results in complex and real algebraic geometry can be obtained with similar methods.
We define a motivic conductor for any presheaf with transfers F using the categorical framework developed for the theory of motives with modulus by Kahn, Miyazaki, Saito and Yamazaki. If F is a reciprocity sheaf, this conductor yields an increasing and exhaustive filtration on
$F(L)$
, where L is any henselian discrete valuation field of geometric type over the perfect ground field. We show that if F is a smooth group scheme, then the motivic conductor extends the Rosenlicht–Serre conductor; if F assigns to X the group of finite characters on the abelianised étale fundamental group of X, then the motivic conductor agrees with the Artin conductor defined by Kato and Matsuda; and if F assigns to X the group of integrable rank
$1$
connections (in characteristic
$0$
), then it agrees with the irregularity. We also show that this machinery gives rise to a conductor for torsors under finite flat group schemes over the base field, which we believe to be new. We introduce a general notion of conductors on presheaves with transfers and show that on a reciprocity sheaf, the motivic conductor is minimal and any conductor which is defined only for henselian discrete valuation fields of geometric type with perfect residue field can be uniquely extended to all such fields without any restriction on the residue field. For example, the Kato–Matsuda Artin conductor is characterised as the canonical extension of the classical Artin conductor defined in the case of a perfect residue field.
We prove that the special-value conjecture for the zeta function of a proper, regular, flat arithmetic surface formulated in [6] at
$s=1$
is equivalent to the Birch and Swinnerton-Dyer conjecture for the Jacobian of the generic fibre. There are two key results in the proof. The first is the triviality of the correction factor of [6, Conjecture 5.12], which we show for arbitrary regular proper arithmetic schemes. In the proof we need to develop some results for the eh-topology on schemes over finite fields which might be of independent interest. The second result is a different proof of a formula due to Geisser, relating the cardinalities of the Brauer and the Tate–Shafarevich group, which applies to arbitrary rather than only totally imaginary base fields.