We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $X$ be a nonempty set and ${\mathcal{P}}(X)$ the power set of $X$. The aim of this paper is to identify the unital subrings of ${\mathcal{P}}(X)$ and to compute its cardinality when it is finite. It is proved that any topology $\unicode[STIX]{x1D70F}$ on $X$ such that $\unicode[STIX]{x1D70F}=\unicode[STIX]{x1D70F}^{c}$, where $\unicode[STIX]{x1D70F}^{c}=\{U^{c}\mid U\in \unicode[STIX]{x1D70F}\}$, is a unital subring of ${\mathcal{P}}(X)$. It is also shown that $X$ is finite if and only if any unital subring of ${\mathcal{P}}(X)$ is a topology $\unicode[STIX]{x1D70F}$ on $X$ such that $\unicode[STIX]{x1D70F}=\unicode[STIX]{x1D70F}^{c}$ if and only if the set of unital subrings of ${\mathcal{P}}(X)$ is finite. As a consequence, if $X$ is finite with cardinality $n\geq 2$, then the number of unital subrings of ${\mathcal{P}}(X)$ is equal to the $n$th Bell number and the supremum of the lengths of chains of unital subalgebras of ${\mathcal{P}}(X)$ is equal to $n-1$.
With entries of the adjacency matrix of a simple graph being regarded as elements of $\mathbb{F}_{2}$, it is proved that a finite commutative ring $R$ with $1\neq 0$ is a Boolean ring if and only if either $R\in \{\mathbb{F}_{2},\mathbb{F}_{2}\times \mathbb{F}_{2}\}$ or the eigenvalues (in the algebraic closure of $\mathbb{F}_{2}$) corresponding to the zero-divisor graph of $R$ are precisely the elements of $\mathbb{F}_{4}\setminus \{0\}$ . This is achieved by observing a way in which algebraic behavior in a Boolean ring is encoded within Pascal’s triangle so that computations can be carried out by appealing to classical results from number theory.
We study the total graph of a finite commutative ring. We calculate its metric dimension in the case when the Jacobson radical of the ring is nontrivial, and we examine the metric dimension of the total graph of a product of at most two fields, obtaining either exact values in some cases or bounds in other, depending on the number of elements in the respective fields.
The zero-divisor graph $\Gamma (R)$ of a commutative ring $R$ is the graph whose vertices consist of the nonzero zero-divisors of $R$ such that distinct vertices $x$ and $y$ are adjacent if and only if $xy\,=\,0$. In this paper, a characterization is provided for zero-divisor graphs of Boolean rings. Also, commutative rings $R$ such that $\Gamma (R)$ is isomorphic to the zero-divisor graph of a direct product of integral domains are classified, as well as those whose zero-divisor graphs are central vertex complete.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.