We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we compute the topological Hochschild homology of quotients of discrete valuation rings (DVRs). Along the way we give a short argument for Bökstedt periodicity and generalizations over various other bases. Our strategy also gives a very efficient way to redo the computations of $\operatorname {THH}$ (respectively, logarithmic $\operatorname {THH}$) of complete DVRs originally due to Lindenstrauss and Madsen (respectively, Hesselholt and Madsen).
For a not-necessarily commutative ring $R$ we define an abelian group $W(R;M)$ of Witt vectors with coefficients in an $R$-bimodule $M$. These groups generalize the usual big Witt vectors of commutative rings and we prove that they have analogous formal properties and structure. One main result is that $W(R) := W(R;R)$ is Morita invariant in $R$. For an $R$-linear endomorphism $f$ of a finitely generated projective $R$-module we define a characteristic element $\chi _f \in W(R)$. This element is a non-commutative analogue of the classical characteristic polynomial and we show that it has similar properties. The assignment $f \mapsto \chi _f$ induces an isomorphism between a suitable completion of cyclic $K$-theory $K_0^{\mathrm {cyc}}(R)$ and $W(R)$.
We show that the additive higher Chow groups of regular schemes over a field induce a Zariski sheaf of pro-differential graded algebras, the Milnor range of which is isomorphic to the Zariski sheaf of big de Rham–Witt complexes. This provides an explicit cycle-theoretic description of the big de Rham–Witt sheaves. Several applications are derived.
Given a perfect valuation ring $R$ of characteristic $p$ that is complete with respect to a rank-1 nondiscrete valuation, we show that the ring $\mathbb{A}_{\inf }$ of Witt vectors of $R$ has infinite Krull dimension.
We prove that the category of (rigidified) Breuil–Kisin–Fargues modules up to isogeny is Tannakian. We then introduce and classify Breuil–Kisin–Fargues modules with complex multiplication mimicking the classical theory for rational Hodge structures. In particular, we compute an avatar of a ‘$p$-adic Serre group’.
We show that the canonical lift construction for ordinary elliptic curves over perfect fields of characteristic $p>0$ extends uniquely to arbitrary families of ordinary elliptic curves, even over $p$-adic formal schemes. In particular, the universal ordinary elliptic curve has a canonical lift. The existence statement is largely a formal consequence of the universal property of Witt vectors applied to the moduli space of ordinary elliptic curves, at least with enough level structure. As an application, we show how this point of view allows for more formal proofs of recent results of Finotti and Erdoğan.
Given a smooth variety $X$ and an effective Cartier divisor $D\subset X$, we show that the cohomological Chow group of 0-cycles on the double of $X$ along $D$ has a canonical decomposition in terms of the Chow group of 0-cycles $\text{CH}_{0}(X)$ and the Chow group of 0-cycles with modulus $\text{CH}_{0}(X|D)$ on $X$. When $X$ is projective, we construct an Albanese variety with modulus and show that this is the universal regular quotient of $\text{CH}_{0}(X|D)$. As a consequence of the above decomposition, we prove the Roitman torsion theorem for the 0-cycles with modulus. We show that $\text{CH}_{0}(X|D)$ is torsion-free and there is an injective cycle class map $\text{CH}_{0}(X|D){\hookrightarrow}K_{0}(X,D)$ if $X$ is affine. For a smooth affine surface $X$, this is strengthened to show that $K_{0}(X,D)$ is an extension of $\text{CH}_{1}(X|D)$ by $\text{CH}_{0}(X|D)$.
The K-theoretical aspect of the commutative Bezout rings is established using the arithmetical properties of the Bezout rings in order to obtain a ring of all Smith normal forms of matrices over the Bezout ring. The internal structure and basic properties of such rings are discussed as well as their presentations by the Witt vectors. In a case of a commutative von Neumann regular rings the famous Grothendieck group K0(R) obtains the alternative description.
We define a p-adic character to be a continuous homomorphism from For p > 2, we use the ring of big Witt vectors over to exhibit a bijection between p-adic characters and sequences (ci)(i,p)=1 of elements in indexed by natural numbers relatively prime to p, and for which . To such a p-adic character we associate an L-function, and we prove that this L-function is p-adic meromorphic if the corresponding sequence (ci) is overconvergent. If more generally the sequence is C log-convergent, we show that the associated L-function is meromorphic in the open disk of radius qC. Finally, we exhibit examples of C log-convergent sequences with associated L-functions which are not meromorphic in the disk of radius qC+∊ for any ∊ > 0.
Let R be a perfect 𝔽-algebra equipped with the trivial norm. Let W(R) be the ring of p-typical Witt vectors over R equipped with the p-adic norm. At the level of nonarchimedean analytic spaces (in the sense of Berkovich), we demonstrate a close analogy between W(R) and the polynomial ring R[T] equipped with the Gauss norm, in which the role of the structure morphism from R to R[T] is played by the Teichmüller map. For instance, we show that the analytic space associated to R is a strong deformation retract of the space associated to W(R). We also show that each fiber forms a tree under the relation of pointwise comparison, and we classify the points of fibers in the manner of Berkovich’s classification of points of a nonarchimedean disk. Some results pertain to the study of p-adic representations of étale fundamental groups of nonarchimedean analytic spaces (i.e., relative p-adic Hodge theory).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.