We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To date, the bestmethodsfor estimating the growth of mean values of arithmetic functions rely on the Voronoï summation formula. By noticing a general pattern in the proof of his summation formula, Voronoï postulated that analogous summation formulas for $\sum a(n)f(n)$ can be obtained with ‘nice’ test functions f(n), provided a(n) is an ‘arithmetic function’. These arithmetic functions a(n) are called so because they are expected to appear as coefficients of some L-functions satisfying certain properties. It has been well-known that the functional equation for a general L-function can be used to derive a Voronoï-type summation identity for that L-function. In this article, we show that such a Voronoï-typesummation identity in fact endows the L-function with some structural properties, yielding in particular the functional equation. We do this by considering Dirichlet series satisfying functional equations involving multiple Gamma factors and show that a given arithmetic function appears as a coefficient of such a Dirichlet series if and only if it satisfies the aforementioned summation formulas.
Let $\zeta _K(s)$ denote the Dedekind zeta-function associated to a number field K. We give an effective upper bound for the height of the first nontrivial zero other than $1/2$ of $\zeta _K(s)$ under the generalised Riemann hypothesis. This is a refinement of the earlier bound obtained by Sami [‘Majoration du premier zéro de la fonction zêta de Dedekind’, Acta Arith.99(1) (2000), 61–65].
We investigate the joint distribution of L-functions on the line $ \sigma= {1}/{2} + {1}/{G(T)}$ and $ t \in [ T, 2T]$, where $ \log \log T \leq G(T) \leq { \log T}/{ ( \log \log T)^2 } $. We obtain an upper bound on the discrepancy between the joint distribution of L-functions and that of their random models. As an application we prove an asymptotic expansion of a multi-dimensional version of Selberg’s central limit theorem for L-functions on $ \sigma= 1/2 + 1/{G(T)}$ and $ t \in [ T, 2T]$, where $ ( \log T)^\varepsilon \leq G(T) \leq { \log T}/{ ( \log \log T)^{2+\varepsilon } } $ for $ \varepsilon > 0$.
In this note, we study the Li coefficients $\lambda _{n,a}$ for the quadrilateral zeta function. Furthermore, we give an arithmetic and asymptotic formula for these coefficients. Especially, we show that for any fixed $n \in {\mathbb {N}}$, there exists $a>0$ such that $\lambda _{2n-1,a}> 0$ and $\lambda _{2n,a} < 0$.
In this paper, we investigate the distributive properties of square-free divisors over square-full integers. We first compute the mean value of the number of such divisors and obtain the error term which appears in its asymptotic formula. We then show that if one assumes the Riemann Hypothesis, then the omega estimate of such an error term can be drastically improved. Finally, we compute the omega estimate of the mean square of such an error term.
On the assumption of the Riemann hypothesis and a spacing hypothesis for the nontrivial zeros $1/2+i\gamma$ of the Riemann zeta function, we show that the sequence
where the ${\gamma }$ are arranged in increasing order, is uniformly distributed modulo one. Here a and b are real numbers with $a<b$, and $m_\gamma$ denotes the multiplicity of the zero $1/2+i{\gamma }$. The same result holds when the ${\gamma }$’s are restricted to be the ordinates of simple zeros. With an extra hypothesis, we are also able to show an equidistribution result for the scaled numbers $\gamma (\!\log T)/2\pi$ with ${\gamma }\in \Gamma_{[a, b]}$ and $0<{\gamma }\leq T$.
We discuss the class of functions, which are well approximated on compacta by the geometric mean of the eigenvalues of a unital (completely) positive map into a matrix algebra or more generally a type $II_1$ factor, using the notion of a Fuglede–Kadison determinant. In two variables, the two classes are the same, but in three or more noncommuting variables, there are generally functions arising from type $II_1$ von Neumann algebras, due to the recently established failure of the Connes embedding conjecture. The question of whether or not approximability holds for scalar inputs is shown to be equivalent to a restricted form of the Connes embedding conjecture, the so-called shuffle-word-embedding conjecture.
Assuming an averaged form of Mertens’ conjecture and that the ordinates of the non-trivial zeros of the Riemann zeta function are linearly independent over the rationals, we analyse the finer structure of the terms in a well-known formula of Ramanujan.
We provide explicit bounds for the Riemann zeta-function on the line $\mathrm {Re}\,{s}=1$, assuming that the Riemann hypothesis holds up to height T. In particular, we improve some bounds in finite regions for the logarithmic derivative and the reciprocal of the Riemann zeta-function.
We use the Weyl bound for Dirichlet L-functions to derive zero-density estimates for L-functions associated to families of fixed-order Dirichlet characters. The results improve on previous bounds given by the author when $\sigma $ is sufficiently distant from the critical line.
We prove an upper bound for the sum of values of the ideal class zeta-function over nontrivial zeros of the Riemann zeta-function. The same result for the Dedekind zeta-function is also obtained. This may shed light on some unproved cases of the general Dedekind conjecture.
In this article, we obtain transformation formulas analogous to the identity of Ramanujan, Hardy and Littlewood in the setting of primitive Maass cusp form over the congruence subgroup $\Gamma _0(N)$ and also provide an equivalent criterion of the grand Riemann hypothesis for the $L$-function associated with the primitive Maass cusp form over $\Gamma _0(N)$.
We formulate a generalization of Riesz-type criteria in the setting of L-functions belonging to the Selberg class. We obtain a criterion which is sufficient for the grand Riemann hypothesis (GRH) for L-functions satisfying axioms of the Selberg class without imposing the Ramanujan hypothesis on their coefficients. We also construct a subclass of the Selberg class and prove a necessary criterion for GRH for L-functions in this subclass. Identities of Ramanujan–Hardy–Littlewood type are also established in this setting, specific cases of which yield new transformation formulas involving special values of the Meijer G-function of the type ${G^{n , 0}_{0 , n}}$.
Fujii obtained a formula for the average number of Goldbach representations with lower-order terms expressed as a sum over the zeros of the Riemann zeta function and a smaller error term. This assumed the Riemann Hypothesis. We obtain an unconditional version of this result and obtain applications conditional on various conjectures on zeros of the Riemann zeta function.
In this paper, we obtain a precise formula for the one-level density of L-functions attached to non-Galois cubic Dedekind zeta functions. We find a secondary term which is unique to this context, in the sense that no lower-order term of this shape has appeared in previously studied families. The presence of this new term allows us to deduce an omega result for cubic field counting functions, under the assumption of the Generalised Riemann Hypothesis. We also investigate the associated L-functions Ratios Conjecture and find that it does not predict this new lower-order term. Taking into account the secondary term in Roberts’s conjecture, we refine the Ratios Conjecture to one which captures this new term. Finally, we show that any improvement in the exponent of the error term of the recent Bhargava–Taniguchi–Thorne cubic field counting estimate would imply that the best possible error term in the refined Ratios Conjecture is
$O_\varepsilon (X^{-\frac 13+\varepsilon })$
. This is in opposition with all previously studied families in which the expected error in the Ratios Conjecture prediction for the one-level density is
$O_\varepsilon (X^{-\frac 12+\varepsilon })$
.
We obtain some improved results for the exponential sum
$\sum _{x<n\leq 2x}\Lambda (n)e(\alpha k n^{\theta })$
with
$\theta \in (0,5/12),$
where
$\Lambda (n)$
is the von Mangoldt function. Such exponential sums have relations with the so-called quasi-Riemann hypothesis and were considered by Murty and Srinivas [‘On the uniform distribution of certain sequences’, Ramanujan J.7 (2003), 185–192].
We prove that the Riemann hypothesis is equivalent to the condition
$\int _{2}^x\left (\pi (t)-\operatorname {\textrm {li}}(t)\right )\textrm {d}t<0$
for all
$x>2$
. Here,
$\pi (t)$
is the prime-counting function and
$\operatorname {\textrm {li}}(t)$
is the logarithmic integral. This makes explicit a claim of Pintz. Moreover, we prove an analogous result for the Chebyshev function
$\theta (t)$
and discuss the extent to which one can make related claims unconditionally.