We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove the convergence of moments of the number of directions of affine lattice vectors that fall into a small disc, under natural Diophantine conditions on the shift. Furthermore, we show that the pair correlation function is Poissonian for any irrational shift in dimension 3 and higher, including well-approximable vectors. Convergence in distribution was already proved in the work of Strömbergsson and the second author [The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems. Ann. of Math. (2)172 (2010), 1949–2033], and the principal step in the extension to convergence of moments is an escape of mass estimate for averages over embedded $\operatorname {SL}(d,\mathbb {R})$-horospheres in the space of affine lattices.
On the assumption of the Riemann hypothesis and a spacing hypothesis for the nontrivial zeros $1/2+i\gamma$ of the Riemann zeta function, we show that the sequence
where the ${\gamma }$ are arranged in increasing order, is uniformly distributed modulo one. Here a and b are real numbers with $a<b$, and $m_\gamma$ denotes the multiplicity of the zero $1/2+i{\gamma }$. The same result holds when the ${\gamma }$’s are restricted to be the ordinates of simple zeros. With an extra hypothesis, we are also able to show an equidistribution result for the scaled numbers $\gamma (\!\log T)/2\pi$ with ${\gamma }\in \Gamma_{[a, b]}$ and $0<{\gamma }\leq T$.
We consider families of exponential sums indexed by a subgroup of invertible classes modulo some prime power q. For fixed d, we restrict to moduli q so that there is a unique subgroup of invertible classes modulo q of order d. We study distribution properties of these families of sums as q grows and we establish equidistribution results in some regions of the complex plane which are described as the image of a multi-dimensional torus via an explicit Laurent polynomial. In some cases, the region of equidistribution can be interpreted as the one delimited by a hypocycloid, or as a Minkowski sum of such regions.
For integers a and $b\geq 2$, let $T_a$ and $T_b$ be multiplication by a and b on $\mathbb {T}=\mathbb {R}/\mathbb {Z}$. The action on $\mathbb {T}$ by $T_a$ and $T_b$ is called $\times a,\times b$ action and it is known that, if a and b are multiplicatively independent, then the only $\times a,\times b$ invariant and ergodic measure with positive entropy of $T_a$ or $T_b$ is the Lebesgue measure. However, it is not known whether there exists a non-trivial $\times a,\times b$ invariant and ergodic measure. In this paper, we study the empirical measures of $x\in \mathbb {T}$ with respect to the $\times a,\times b$ action and show that the set of x such that the empirical measures of x do not converge to any measure has Hausdorff dimension one and the set of x such that the empirical measures can approach a non-trivial $\times a,\times b$ invariant measure has Hausdorff dimension zero. Furthermore, we obtain some equidistribution result about the $\times a,\times b$ orbit of x in the complement of a set of Hausdorff dimension zero.
An explicit formula forthe mean value of $\vert L(1,\chi )\vert ^2$ is known, where $\chi $ runs over all odd primitive Dirichlet characters of prime conductors p. Bounds on the relative class number of the cyclotomic field ${\mathbb Q}(\zeta _p)$ follow. Lately, the authors obtained that the mean value of $\vert L(1,\chi )\vert ^2$ is asymptotic to $\pi ^2/6$, where $\chi $ runs over all odd primitive Dirichlet characters of prime conductors $p\equiv 1\ \ \pmod {2d}$ which are trivial on a subgroup H of odd order d of the multiplicative group $({\mathbb Z}/p{\mathbb Z})^*$, provided that $d\ll \frac {\log p}{\log \log p}$. Bounds on the relative class number of the subfield of degree $\frac {p-1}{2d}$ of the cyclotomic field ${\mathbb Q}(\zeta _p)$ follow. Here, for a given integer $d_0>1$, we consider the same questions for the nonprimitive odd Dirichlet characters $\chi '$ modulo $d_0p$ induced by the odd primitive characters $\chi $ modulo p. We obtain new estimates for Dedekind sums and deduce that the mean value of $\vert L(1,\chi ')\vert ^2$ is asymptotic to $\frac {\pi ^2}{6}\prod _{q\mid d_0}\left (1-\frac {1}{q^2}\right )$, where $\chi $ runs over all odd primitive Dirichlet characters of prime conductors p which are trivial on a subgroup H of odd order $d\ll \frac {\log p}{\log \log p}$. As a consequence, we improve the previous bounds on the relative class number of the subfield of degree $\frac {p-1}{2d}$ of the cyclotomic field ${\mathbb Q}(\zeta _p)$. Moreover, we give a method to obtain explicit formulas and use Mersenne primes to show that our restriction on d is essentially sharp.
In this paper, we investigate pigeonhole statistics for the fractional parts of the sequence $\sqrt {n}$. Namely, we partition the unit circle $ \mathbb {T} = \mathbb {R}/\mathbb {Z}$ into N intervals and show that the proportion of intervals containing exactly j points of the sequence $(\sqrt {n} + \mathbb {Z})_{n=1}^N$ converges in the limit as $N \to \infty $. More generally, we investigate how the limiting distribution of the first $sN$ points of the sequence varies with the parameter $s \geq 0$. A natural way to examine this is via point processes—random measures on $[0,\infty )$ which represent the arrival times of the points of our sequence to a random interval from our partition. We show that the sequence of point processes we obtain converges in distribution and give an explicit description of the limiting process in terms of random affine unimodular lattices. Our work uses ergodic theory in the space of affine unimodular lattices, building upon work of Elkies and McMullen [Gaps in $\sqrt {n}$ mod 1 and ergodic theory. Duke Math. J.123 (2004), 95–139]. We prove a generalisation of equidistribution of rational points on expanding horocycles in the modular surface, working instead on nonlinear horocycle sections.
Given an infinite subset
$\mathcal{A} \subseteq\mathbb{N}$
, let A denote its smallest N elements. There is a rich and growing literature on the question of whether for typical
$\alpha\in[0,1]$
, the pair correlations of the set
$\alpha A (\textrm{mod}\ 1)\subset [0,1]$
are asymptotically Poissonian as N increases. We define an inhomogeneous generalisation of the concept of pair correlation, and we consider the corresponding doubly metric question. Many of the results from the usual setting carry over to this new setting. Moreover, the double metricity allows us to establish some new results whose singly metric analogues are missing from the literature.
where $p$ is a polynomial with at least one irrational coefficient on non-constant terms, $d$ is any real number and, for $a\in [0,\infty )$, $a~\text{mod}~1$ is the fractional part of $a$. With the help of a method recently introduced by Wu, we show that the closure of $A$ must have full Hausdorff dimension.
We conjecture that bounded generalised polynomial functions cannot be generated by finite automata, except for the trivial case when they are ultimately periodic.
Using methods from ergodic theory, we are able to partially resolve this conjecture, proving that any hypothetical counterexample is periodic away from a very sparse and structured set. In particular, we show that for a polynomial $p(n)$ with at least one irrational coefficient (except for the constant one) and integer $m\geqslant 2$, the sequence $\lfloor p(n)\rfloor \hspace{0.2em}{\rm mod}\hspace{0.2em}m$ is never automatic.
We also prove that the conjecture is equivalent to the claim that the set of powers of an integer $k\geqslant 2$ is not given by a generalised polynomial.
An oft-cited result of Peter Shiu bounds the mean value of a nonnegative multiplicative function over a coprime arithmetic progression. We prove a variant where the arithmetic progression is replaced by a sifted set. As an application, we show that the normalized square roots of −1 (mod m) are equidistributed (mod 1) as m runs through the shifted primes q − 1.
Furstenberg’s $\times 2\times 3$ theorem asserts that the double sequence $(2^{m}3^{n}\unicode[STIX]{x1D6FC})_{m,n\geq 1}$ is dense modulo one for every irrational $\unicode[STIX]{x1D6FC}$. The same holds with $2$ and $3$ replaced by any two multiplicatively independent integers. Here we obtain the same result for the sequences $((\begin{smallmatrix}m+n\\ d\end{smallmatrix})a^{m}b^{n}\unicode[STIX]{x1D6FC})_{m,n\geq 1}$ for any non-negative integer $d$ and irrational $\unicode[STIX]{x1D6FC}$, and for the sequence $(P(m)a^{m}b^{n})_{m,n\geq 1}$, where $P$ is any polynomial with at least one irrational coefficient. Similarly to Furstenberg’s theorem, both results are obtained by considering appropriate dynamical systems.
Let $\unicode[STIX]{x1D703}$ be an irrational number and $\unicode[STIX]{x1D711}:\mathbb{N}\rightarrow \mathbb{R}^{+}$ be a monotone decreasing function tending to zero. Let
$$\begin{eqnarray}E_{\unicode[STIX]{x1D711}}(\unicode[STIX]{x1D703})=\{y\in \mathbb{R}:\Vert n\unicode[STIX]{x1D703}-y\Vert <\unicode[STIX]{x1D711}(n),\text{for infinitely many }n\in \mathbb{N}\},\end{eqnarray}$$
i.e. the set of points which are approximated by the irrational rotation with respect to the error function $\unicode[STIX]{x1D711}(n)$. In this article, we give a complete description of the Hausdorff dimension of $E_{\unicode[STIX]{x1D711}}(\unicode[STIX]{x1D703})$ for any monotone function $\unicode[STIX]{x1D711}$ and any irrational $\unicode[STIX]{x1D703}$.
Let $A$ be a set of natural numbers. Recent work has suggested a strong link between the additive energy of $A$ (the number of solutions to $a_{1}+a_{2}=a_{3}+a_{4}$ with $a_{i}\in A$) and the metric Poissonian property, which is a fine-scale equidistribution property for dilates of $A$ modulo $1$. There appears to be reasonable evidence to speculate a sharp Khinchin-type threshold, that is, to speculate that the metric Poissonian property should be completely determined by whether or not a certain sum of additive energies is convergent or divergent. In this article, we primarily address the convergence theory, in other words the extent to which having a low additive energy forces a set to be metric Poissonian.
Let $b$ be an integer larger than 1. We give an asymptotic formula for the exponential sum
$$\begin{eqnarray}\mathop{\sum }_{\substack{ p\leqslant x \\ g(p)=k}}\exp \big(2\text{i}\unicode[STIX]{x1D70B}\unicode[STIX]{x1D6FD}p\big),\end{eqnarray}$$
where the summation runs over prime numbers $p$ and where $\unicode[STIX]{x1D6FD}\in \mathbb{R}$, $k\in \mathbb{Z}$, and $g:\mathbb{N}\rightarrow \mathbb{Z}$ is a strongly $b$-additive function such that $\operatorname{pgcd}(g(1),\ldots ,g(b-1))=1$.
Until recently, the ‘plus part’ of the class numbers of cyclotomic fields had only been determined for fields of root discriminant small enough to be treated by Odlyzko’s discriminant bounds.
However, by finding lower bounds for sums over prime ideals of the Hilbert class field, we can now establish upper bounds for class numbers of fields of larger discriminant. This new analytic upper bound, together with algebraic arguments concerning the divisibility properties of class numbers, allows us to unconditionally determine the class numbers of many cyclotomic fields that had previously been untreatable by any known method.
In this paper, we study in particular the cyclotomic fields of composite conductor.
Let θ be a real number greater than 1, and let (()) be the fractional part function. Then, θ is said to be a Z-number if there is a non-zero real number λ such that ((λθn)) < for all n ∈ ℕ. Dubickas (A. Dubickas, Even and odd integral parts of powers of a real number, Glasg. Math. J., 48 (2006), 331–336) showed that strong Pisot numbers are Z-numbers. Here it is proved that θ is a strong Pisot number if and only if there exists λ ≠ 0 such that ((λα)) < for all. Also, the following characterisation of Pisot numbers among real numbers greater than 1 is shown: θ is a Pisot number ⇔ ∃ λ ≠ 0 such thatfor allan ∈ {0,1}, N ∈ ℕ}, where ‖λα‖ = min{((λα)), 1 − ((λα))}.
We give a two dimensional extension of the three distance theorem. Let $\theta $ be in ${{\mathbf{R}}^{2}}$ and let $q$ be in $\mathbf{N}$. There exists a triangulation of ${{\mathbf{R}}^{2}}$ invariant by ${{\mathbf{Z}}^{2}}$-translations, whose set of vertices is ${{\mathbf{Z}}^{2}}\,+\,\{0,\,\theta ,\,\ldots ,\,q\theta \}$, and whose number of different triangles, up to translations, is bounded above by a constant which does not depend on $\theta $ and $q$.
Benford's law (to base $B$) for an infinite sequence $\{x_k: k \ge 1\}$ of positive quantities $x_k$ is the assertion that $\{ \log_B x_k : k \ge 1\}$ is uniformly distributed $(\bmod\ 1)$. The $3x+1$ function $T(n)$ is given by $T(n)=(3n+1)/{2}$ if $n$ is odd, and $T(n)= n/2$ if $n$ is even. This paper studies the initial iterates $x_k= T^{(k)}(x_0)$ for $1 \le k \le N$ of the $3x+1$ function, where $N$ is fixed. It shows that for most initial values $x_0$, such sequences approximately satisfy Benford's law, in the sense that the discrepancy of the finite sequence $\{\log_B x_k: 1 \le k \le N \}$ is small.
We define a subset $\mathcal Z$ of $(1,+\infty)$ with the property that for each $\alpha \in {\mathcal Z}$ there is a nonzero real number $\xi = \xi(\alpha)$ such that the integral parts $[\xi \alpha^n]$ are even for all $n \in \mathbb{N}$. A result of Tijdeman implies that each number greater than or equal to 3 belongs to $\mathcal{Z}$. However, Mahler's question on whether the number 3/2 belongs to $\mathcal{Z}$ or not remains open. We prove that the set ${\mathcal S}:=(1,+\infty) \textbackslash {\mathcal Z}$ is nonempty and find explicitly some numbers in ${\mathcal Z} \cap$ (5/4,3) and in ${\mathcal S} \cap (1,2)$.