We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this note, we revisit Ramanujan-type series for $\frac {1}{\pi }$ and show how they arise from genus zero subgroups of $\mathrm {SL}_{2}(\mathbb {R})$ that are commensurable with $\mathrm {SL}_{2}(\mathbb {Z})$. As illustrations, we reproduce a striking formula of Ramanujan for $\frac {1}{\pi }$ and a recent result of Cooper et al., as well as derive a new rational Ramanujan-type series for $\frac {1}{\pi }$. As a byproduct, we obtain a Clausen-type formula in some general sense and reproduce a Clausen-type quadratic transformation formula closely related to the aforementioned formula of Ramanujan.
We consider three different families of Vafa–Witten invariants of $K3$ surfaces. In each case, the partition function that encodes the Vafa–Witten invariants is given by combinations of twisted Dedekind η-functions. By utilizing known properties of these η-functions, we obtain exact formulae for each of the invariants and prove that they asymptotically satisfy all higher-order Turán inequalities.
We find defining equations for the Shimura curve of discriminant 15 over $\mathbb{Z}[1/15]$. We then determine the graded ring of automorphic forms over the 2-adic integers, as well as the higher cohomology. We apply this to calculate the homotopy groups of a spectrum of ‘topological automorphic forms’ associated to this curve, as well as one associated to a quotient by an Atkin–Lehner involution.
For the locally symmetric space X attached to an arithmetic subgroup of an algebraic group G of ℚ-rank r, we construct a compact manifold by gluing together 2r copies of the Borel–Serre compactification of X. We apply the classical Lefschetz fixed point formula to and get formulas for the traces of Hecke operators ℋ acting on the cohomology of X. We allow twistings of ℋ by outer automorphisms η of G. We stabilize this topological trace formula and compare it with the corresponding formula for an endoscopic group of the pair (G,η) . As an application, we deduce a weak lifting theorem for the lifting of automorphic representations from Siegel modular groups to general linear groups.
In this note we search the parameter space of Horrocks–Mumford quintic threefolds and locate a Calabi–Yau threefold that is modular, in the sense that the $L$-function of its middle-dimensional cohomology is associated with a classical modular form of weight 4 and level 55.
This paper investigates the modularity of three non-rigid Calabi–Yau threefolds with bad reduction at 11. They are constructed as fibre products of rational elliptic surfaces, involving the modular elliptic surface of level 5. Their middle $\ell$-adic cohomology groups are shown to split into two-dimensional pieces, all but one of which can be interpreted in terms of elliptic curves. The remaining pieces are associated to newforms of weight 4 and level 22 or 55, respectively. For this purpose, we develop a method by Serre to compare the corresponding two-dimensional 2-adic Galois representations with uneven trace. Eventually this method is also applied to a self fibre product of the Hesse-pencil, relating it to a newform of weight 4 and level 27.