We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We discuss several ways of packing a hyperbolic surface with circles (of either varying radii or all being congruent) or horocycles, and note down some observations related to their symmetries (or the absence thereof).
We develop the relationship between quaternionic hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on quaternionic hyperbolic spaces, especially in dimension 2. We prove a Mertens counting formula for the rational points over a definite quaternion algebra A over
${\mathbb{Q}}$
in the light cone of quaternionic Hermitian forms, as well as a Neville equidistribution theorem of the set of rational points over A in quaternionic Heisenberg groups.
We prove a theorem describing the limiting fine-scale statistics of orbits of a point in hyperbolic space under the action of a discrete subgroup. Similar results have been proved only in the lattice case with two recent infinite-volume exceptions by Zhang for Apollonian circle packings and certain Schottky groups. Our results hold for general Zariski dense, non-elementary, geometrically finite subgroups in any dimension. Unlike in the lattice case orbits of geometrically finite subgroups do not necessarily equidistribute on the whole boundary of hyperbolic space. But rather they may equidistribute on a fractal subset. Understanding the behavior of these orbits near the boundary is central to Patterson–Sullivan theory and much further work. Our theorem characterises the higher order spatial statistics and thus addresses a very natural question. As a motivating example our work applies to sphere packings (in any dimension) which are invariant under the action of such discrete subgroups. At the end of the paper we show how this statistical characterization can be used to prove convergence of moments and to write down the limiting formula for the two-point correlation function and nearest neighbor distribution. Moreover we establish a formula for the 2 dimensional limiting gap distribution (and cumulative gap distribution) which also applies in the lattice case.
The topic of this course is the discrete subgroups of semisimple Lie groups. We discuss a criterion that ensures that such a subgroup is arithmetic. This criterion is a joint work with Sébastien Miquel, which extends previous work of Selberg and Hee Oh and solves an old conjecture of Margulis. We focus on concrete examples like the group
$\mathrm {SL}(d,{\mathbb {R}})$
and we explain how classical tools and new techniques enter the proof: the Auslander projection theorem, the Bruhat decomposition, the Mahler compactness criterion, the Borel density theorem, the Borel–Harish-Chandra finiteness theorem, the Howe–Moore mixing theorem, the Dani–Margulis recurrence theorem, the Raghunathan–Venkataramana finite-index subgroup theorem and so on.
Higher dimensional analogues of the modular group $\mathit{PSL}(2,\mathbb{Z})$ are closely related to hyperbolic reflection groups and Coxeter polyhedra with big symmetry groups. In this context, we develop a theory and dissection properties of ideal hyperbolic $k$-rectified regular polyhedra, which is of independent interest. As an application, we can identify the covolumes of the quaternionic modular groups with certain explicit rational multiples of the Riemann zeta value $\unicode[STIX]{x1D701}(3)$.
A question of Griffiths–Schmid asks when the monodromy group of an algebraic family of complex varieties is arithmetic. We resolve this in the affirmative for a class of algebraic surfaces known as Atiyah–Kodaira manifolds, which have base and fibers equal to complete algebraic curves. Our methods are topological in nature and involve an analysis of the ‘geometric’ monodromy, valued in the mapping class group of the fiber.
We describe algorithms that allow the computation of fundamental domains in the Bruhat–Tits tree for the action of discrete groups arising from quaternion algebras. These algorithms are used to compute spaces of rigid modular forms of arbitrary even weight, and we explain how to evaluate such forms to high precision using overconvergent methods. Finally, these algorithms are applied to the calculation of conjectural equations for the canonical embedding of p-adically uniformizable rational Shimura curves. We conclude with an example in the case of a genus 4 Shimura curve.
In this paper we give a lower bound with respect to block length for the trace of non-elliptic conjugacy classes of the Hecke groups. One consequence of our bound is that there are finitely many conjugacy classes of a given trace in anyHecke group. We show that another consequence of our bound is that class numbers are finite for related hyperbolic $\mathbb{Z}\left[ \text{ }\!\!\lambda\!\!\text{ } \right]$-binary quadratic forms. We give canonical class representatives and calculate class numbers for some classes of hyperbolic $\mathbb{Z}\left[ \text{ }\!\!\lambda\!\!\text{ } \right]$-binary quadratic forms.
We consider the 33 conjugacy classes of genus zero, torsion-free modular subgroups, computing ramification data and Grothendieck’s dessins d’enfants. In the particular case of the index 36 subgroups, the corresponding Calabi–Yau threefolds are identified, in analogy with the index 24 cases being associated to K3 surfaces. In a parallel vein, we study the 112 semi-stable elliptic fibrations over ${ \mathbb{P} }^{1} $ as extremal K3 surfaces with six singular fibres. In each case, a representative of the corresponding class of subgroups is identified by specifying a generating set for that representative.
We address the problem of existence and uniqueness of a factorization of a given element of the modular group into a product of two Dehn twists. As a geometric application, we conclude that any maximal real elliptic Lefschetz fibration is algebraic.
The normal residual finiteness growth of a group quantifies how well approximated the group is by its finite quotients. We show that any S-arithmetic subgroup of a higher rank Chevalley group G has normal residual finiteness growth ndim (G).
In this paper a formula is derived for the number of conjugacy classes of cyclic subgroups of finite order in those arithmetic Fuchsian groups which are of minimal covolume in their commensurability class. The formula is entirely in terms of the number theoretic data defining the commensurability class of the arithmetic group so that, in particular, any two such groups of minimal covolume in the class, will be isomorphic.
Let $K$ be a function field of genus $g$ with a finite constant field ${\mathbb{F}}_q$. Choose a place $\infty$ of $K$ of degree $\delta$ and let ${\mathbb{C}}$ be the arithmetic Dedekind domain consisting of all elements of $K$ that are integral outside $\infty$. An explicit formula is given (in terms of $q$, $g$ and $\delta$) for the minimum index of a non-congruence subgroup in SL$_2({\mathcal{C}})$. It turns out that this index is always equal to the minimum index of an arbitrary proper subgroup in SL$_2({\mathcal{C}})$. The minimum index of a normal non-congruence subgroup is also determined.
Holomorphic almost modular forms are holomorphic functions of the complex upper half plane that can be approximated arbitrarily well (in a suitable sense) by modular forms of congruence subgroups of large index in ${\rm SL}(2,{\mathbb Z})$. It is proved that such functions have a rotation-invariant limit distribution when the argument approaches the real axis. An example of a holomorphic almost modular form is the logarithm of $\prod_{n=1}^\infty (1-\exp(2\pi\i n^2 z))$. The paper is motivated by the author's previous studies [Int. Math. Res. Not. 39 (2003) 2131–2151] on the connection between almost modular functions and the distribution of the sequence $n^2x$ modulo one.
An infinite family of perfect, non-extremal Riemann surfaces is constructed, the first examples of this type of surfaces. The examples are based on normal subgroups of the modular group $\text{PSL}\left( 2,\,\mathbb{Z} \right)$ of level 6. They provide non-Euclidean analogues to the existence of perfect, non-extremal positive definite quadratic forms. The analogy uses the function syst which associates to every Riemann surface $M$ the length of a systole, which is a shortest closed geodesic of $M$.
Matrices whose entries belong to certain rings of algebraic integers can be associated with discrete groups of transformations of inversive $n$-space or hyperbolic $(n+1)-\text{space}\,{{\text{H}}^{n+1}}$. For small $n$, these may be Coxeter groups, generated by reflections, or certain subgroups whose generators include direct isometries of ${{\text{H}}^{n+1}}$. We show how linear fractional transformations over rings of rational and (real or imaginary) quadratic integers are related to the symmetry groups of regular tilings of the hyperbolic plane or 3-space. New light is shed on the properties of the rational modular group $\text{PS}{{\text{L}}_{2}}(\mathbb{Z})$, the Gaussian modular (Picard) group $\text{PS}{{\text{L}}_{2}}(\mathbb{Z}[i])$, and the Eisenstein modular group $\text{PS}{{\text{L}}_{2}}(\mathbb{Z}\left[ \omega \right])$.
The Modular Group M is PSL2(Z) the group of linear fractional transformations with integral entries and determinant one. M has been of great interest in many diverse fields of Mathematics, including Number Theory, Automorphic Function Theory and Group Theory. In this paper we give an effective algorithm to determine, for each integer d, a complete set of representatives for the trace classes in trace d. This algorithm depends on the combinatorial group theoretic structure of M. It has been subsequently extended by Sheingorn to the general Hecke groups. The number h(d) of trace classes in trace d is equal to the ideal class number of the field The algorithm mentioned above then provides a new straightforward computational procedure for determining h(d). Finally as an outgrowth of the algorithm we present a wide generalization of the Fermat Two-Square theorem. This last result can also be derived from classical work of Gauss.
Let d = 1,2, or p, prime p ≡ 3 (mod 4). Let Od be the ring of integers of an imaginary quadratic field A complete classification of conjugacy classes of maximal non-elementary Fuchsian subgroups of PSL(2, Od) in PGL(2, Od) is given.
Let dbe a positive square-free integer and let Od denote the ring of integers in . The groups PSL2(Od) are collectively known as the Bianchi groups and have been widely studied from the viewpoints of group theory, number theory and low-dimensional topology. The interest of the present article is in geometric Fuchsian subgroups of the groups PSL2(Od). Clearly PSL2 is such a subgroup; however results of [18], [19] show that the Bianchi groups are rich in Fuchsian subgroups.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.