We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The minimum number of idempotent generators is calculated for an incidence algebra of a finite poset over a commutative ring. This quantity equals either $\lceil \log _2 n\rceil $ or $\lceil \log _2 n\rceil +1$, where n is the cardinality of the poset. The two cases are separated in terms of the embedding of the Hasse diagram of the poset into the complement of the hypercube graph.
For any given subgroup H of a finite group G, the Quillen poset ${\mathcal {A}}_p(G)$ of nontrivial elementary abelian p-subgroups is obtained from ${\mathcal {A}}_p(H)$ by attaching elements via their centralisers in H. We exploit this idea to study Quillen’s conjecture, which asserts that if ${\mathcal {A}}_p(G)$ is contractible then G has a nontrivial normal p-subgroup. We prove that the original conjecture is equivalent to the ${{\mathbb {Z}}}$-acyclic version of the conjecture (obtained by replacing ‘contractible’ by ‘${{\mathbb {Z}}}$-acyclic’). We also work with the ${\mathbb {Q}}$-acyclic (strong) version of the conjecture, reducing its study to extensions of direct products of simple groups of p-rank at least $2$. This allows us to extend results of Aschbacher and Smith and to establish the strong conjecture for groups of p-rank at most $4$.
To a pair $P$ and $Q$ of finite posets we attach the toric ring $K[P,Q]$ whose generators are in bijection to the isotone maps from $P$ to $Q$. This class of algebras, called isotonian, are natural generalizations of the so-called Hibi rings. We determine the Krull dimension of these algebras and for particular classes of posets $P$ and $Q$ we show that $K[P,Q]$ is normal and that their defining ideal admits a quadratic Gröbner basis.
We consider weighted sums over points of lattice polytopes, where the weight of a point v is the monomial qλ(v) for some linear form λ. We propose a q-analogue of the classical theory of Ehrhart series and Ehrhart polynomials, including Ehrhart reciprocity and involving evaluation at the q-integers. The main novelty is the proposal to consider q-Ehrhart polynomials. This general theory is then applied to the special case of order polytopes associated with partially ordered sets. Some more specific properties are described in the case of empty polytopes.
We classify flag complexes on at most 12 vertices with torsion in the first homology group. The result is moderately computer-aided.
As a consequence we confirm a folklore conjecture that the smallest poset whose order complex is homotopy equivalent to the real projective plane (and also the smallest poset with torsion in the first homology group) has exactly 13 elements.
A relation between the anticyclic structure of the dendriform operad and the Coxeter transformations in the Grothendieck groups of the derived categories of modules over the Tamari posets is obtained.
A combinatorial Hopf algebra is a graded connected Hopf algebra over a field $\Bbbk$ equipped with a character (multiplicative linear functional) $\zeta\colon{\mathcal H}\to \Bbbk$. We show that the terminal object in the category of combinatorial Hopf algebras is the algebra ${\mathcal Q}{\mathit{Sym}}$ of quasi-symmetric functions; this explains the ubiquity of quasi-symmetric functions as generating functions in combinatorics. We illustrate this with several examples. We prove that every character decomposes uniquely as a product of an even character and an odd character. Correspondingly, every combinatorial Hopf algebra $({\mathcal H},\zeta)$ possesses two canonical Hopf subalgebras on which the character $\zeta$ is even (respectively, odd). The odd subalgebra is defined by certain canonical relations which we call the generalized Dehn–Sommerville relations. We show that, for ${\mathcal H}={\mathcal Q}{\mathit{Sym}}$, the generalized Dehn–Sommerville relations are the Bayer–Billera relations and the odd subalgebra is the peak Hopf algebra of Stembridge. We prove that ${\mathcal Q}{\mathit{Sym}}$ is the product (in the categorical sense) of its even and odd Hopf subalgebras. We also calculate the odd subalgebras of various related combinatorial Hopf algebras: the Malvenuto–Reutenauer Hopf algebra of permutations, the Loday–Ronco Hopf algebra of planar binary trees, the Hopf algebras of symmetric functions and of non-commutative symmetric functions.
We characterize and classify the “regular classes of heaps” introduced by the author using ideas of Fan and of Stembridge. The irreducible objects fall into five infinite families with one exceptional case.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.