To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Now in its fourth edition, this textbook gives a clear and concise account of the government and politics of democratic states, comprehensively updated with recent developments. It provides an ideal guide for undergraduate students who want to understand how and why democratic systems differ between countries and how they are changing in the modern world. It is written and structured in an easy to follow style, enabling students to gain a thorough understanding of the explanations behind complex ideas and theories. The 'Briefings' and 'Controversies' sections give life to the analyses with illustrations drawn from around the globe, whilst its 'Key Term' entries provide students with a route through the concepts of political science. The fourth edition has been fully revised to reflect recent changes in political attitudes and behaviour, voting, parties, party systems and ideologies. The final chapter addresses the future of democratic states facing with these changes and challenges, by examining democratic crisis, populism and post-democracy.
The second edition of Statistics for the Social Sciences prepares students from a wide range of disciplines to interpret and learn the statistical methods critical to their field of study. By using the General Linear Model (GLM), the author builds a foundation that enables students to see how statistical methods are interrelated enabling them to build on the basic skills. The author makes statistics relevant to students' varying majors by using fascinating real-life examples from the social sciences. Students who use this edition will benefit from clear explanations, warnings against common erroneous beliefs about statistics, and the latest developments in the philosophy, reporting, and practice of statistics in the social sciences. The textbook is packed with helpful pedagogical features including learning goals, guided practice, and reflection questions.
In this chapter, students learn about the levels of measurement that social scientists engage in when collecting data. The most common system for conceptualizing quantitative data was developed by Stevens, who defined four levels of data, which are (in ascending order of complexity) nominal, ordinal, interval, and ratio-level data. Nominal data consist of mutually exclusive and exhaustive categories, which are then given an arbitrary number. Ordinal data have all of the qualities of nominal data, but the numbers in ordinal data also indicate rank order. Interval data are characterized by all the traits of nominal and ordinal data, but the spacing between numbers is equal across the entire length of the scale. Finally, ratio data are characterized by the presence of an absolute zero. Higher levels of data contain more information, although it is always possible to convert from one level of data to a lower level. It is not possible to convert data to a higher level than it was collected at. It is important to recognize the level of data because there are certain mathematical procedures that require certain levels of data. Social scientists who ignore the level of their data risk producing meaningless results or distorted statistics.
The chapter on visual models discusses basic ways that scientists create visual representations of their data, including charts and graphs, in order to understand their data better. Like all models, visual models are a simplified version of reality. Two of the visual models discussed in this chapter are the frequency table and histogram. The histogram, in particular, is useful in the shape of the distribution of data, skewness, kurtosis, and the number of peaks. Other visual models in the social sciences include frequency polygons, bar graphs, stem-and-leaf plots, line graphs, pie charts, and scatterplots. All of these visual models help researchers understand their data in different ways, though none is perfect for all situations. Modern technology has resulted in the creation of new ways to visualize data. These methods are more complex, but they provide data analysts with new insights into their data. The incorporation of geographic data, animations, and interactive tools give people more options than ever existed in previous eras.
When the dependent variable consists of nominal data, it is necessary to conduct a χ2 test, of which there are two types in this chapter: the one-variable χ2 test and the two-variable χ2 test. The former procedure tests the null hypothesis that each group formed by the independent variable is equal to a hypothesized proportion. The two-variable χ2 test has the null hypothesis that the two variables are uncorrelated. Both procedures use the same eight steps as all NHSTs.
The effect sizes for χ2 tests are the odds ratio (for both χ2 tests) and the relative risk (for the two-variable χ2 test). When these effect sizes equal to 1.0, the outcome of interest is equally likely for both groups. When these effect sizes are greater than 1.0, the outcome of interest is more likely for the non-baseline group. When these values are less than 1.0, the outcome of interest is more likely for the baseline group. However, odds ratio and relative risk values are not interchangeable. When there are more than two groups or two outcomes, calculating an effect size requires either (1) calculating more than one odds ratio, or (2) combining groups together.
This chapter covers fundamental information that students must know in order to correctly conduct and interpret statistical analyses. The first section discusses why students in the social sciences need to learn statistics. The second section is a primer on the basics of research design, including the nature of research hypotheses and research questions, the difference between experimental and correlational research, and how descriptive statistics and inferential statistics serve different purposes. These foundational concepts are necessary to understand the rest of the textbook.
The final section of the chapter discusses the essential characteristics of models. Every statistical procedure creates a model of the data. Models are simplified versions of the world that make reality easier to understand. Fundamentally, all models are wrong, but the goal of scientists is to create models that are useful in explaining processes, making predictions, and building understanding of phenomena. The lesson distinguishes between theories, theoretical models, statistical models, and visual models so that students are equipped to deal with these concepts in later chapters.