Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-smtgx Total loading time: 0 Render date: 2025-09-12T13:24:24.174Z Has data issue: false hasContentIssue false

Section 6 - Viral Infections

Published online by Cambridge University Press:  18 June 2025

David Mabey
Affiliation:
London School of Hygiene and Tropical Medicine
Martin W. Weber
Affiliation:
World Health Organization
Moffat Nyirenda
Affiliation:
London School of Hygiene and Tropical Medicine
Dorothy Yeboah-Manu
Affiliation:
Noguchi Memorial Institute for Medical Research, University of Ghana
Jackson Orem
Affiliation:
Uganda Cancer Institute, Kampala
Laura Benjamin
Affiliation:
University College London
Michael Marks
Affiliation:
London School of Hygiene and Tropical Medicine
Nicholas A. Feasey
Affiliation:
Liverpool School of Tropical Medicine
Get access

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Al-Hazmi, M, Ayoola, EA, Abdurahman, M et al. Epidemic Rift Valley fever in Saudi Arabia: a clinical study of severe illness in humans. Clin Infect Dis. 2003; 36: 245–52.10.1086/345671CrossRefGoogle ScholarPubMed
Anywaine, Z, Lule, SA, Hansen, C et al. Clinical manifestations of Rift Valley fever in humans: systematic review and meta-analysis. PLoS Negl Trop Dis. 2022; 16(3): e0010233. doi: 10.1371/journal.pntd.0010233.CrossRefGoogle ScholarPubMed
Baudin, M, Jumaa, AM, Jomma, HJE et al. Association of Rift Valley fever virus infection with miscarriage in Sudanese women: a cross-sectional study. Lancet Glob Health. 2016; 4(11): e864e871. doi: 10.1016/S2214-109X(16)30176-0.CrossRefGoogle ScholarPubMed
Choi, JH, Croyle, MA. Emerging targets and novel approaches to Ebola virus prophylaxis and treatment. BioDrugs 2013; 27(6):565–83.CrossRefGoogle ScholarPubMed
Eberhardt, KA, Mischlinger, J, Jordan, S et al. Ribavirin for the treatment of Lassa fever: a systematic review and meta-analysis. Int J Infect Dis. 2019; 87: 1520. doi: 10.1016/j.ijid.2019.07.015.CrossRefGoogle ScholarPubMed
Garrison, AR, Alkhovsky SV, Avšič-Županc T et al. ICTV virus taxonomy profile: Nairoviridae. J Gen Virol. 2020; 101(8): 798–9. doi: 10.1099/jgv.0.001485.CrossRefGoogle ScholarPubMed
Grard, G, Fair, JN, Lee, D et al. A novel rhabdovirus associated with acute hemorrhagic fever in central Africa. PLoS Pathog. 2012; 8(9): e1002924. doi: 10.1371/journal.ppat.1002924.CrossRefGoogle ScholarPubMed
Hunt, L, Gupta-Wright, A, Simms, V et al. Clinical presentation, biochemical, and haematological parameters and their association with outcome in patients with Ebola virus disease: an observational cohort study. Lancet Infect Dis. 2015; 15(11): 1292–9.10.1016/S1473-3099(15)00144-9CrossRefGoogle ScholarPubMed
Ikegami, T, Makino, S. The pathogenesis of Rift Valley fever. Viruses 2011; 3(5): 493519. doi: 10.3390/v3050493.CrossRefGoogle ScholarPubMed
Jacobs M, Rodger A, Bell DJ. Late Ebola virus relapse causing meningoencephalitis: a case report. Lancet 2016; 388(10043): 498–503.10.1016/S0140-6736(16)30386-5CrossRefGoogle Scholar
Jacob, ST, Crozier, I, Fischer, WA et al. Ebola virus disease. Nat Rev Dis Primers 2020; 6(1): 13.10.1038/s41572-020-0147-3CrossRefGoogle ScholarPubMed
Kabami, ZB, Kyobe H, et al. Ebola disease outbreak caused by the Sudan virus in Uganda, 2022: a descriptive epidemiological study. Lancet Glob Health 2022; 12(10): e1684–92.Google Scholar
Kafetzopoulou, LE, Pullan, ST, Lemey, P et al. Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak. Science 2019; 363(6422): 74–7. doi: 10.1126/science.aau9343.CrossRefGoogle ScholarPubMed
Lado, M, Walker, N, Baker, P et al. Clinical features of patients isolated for suspected Ebola virus disease at Connaught Hospital, Freetown, Sierra Leone: a retrospective cohort study. Lancet Infect Dis. 2015; 15(9): 1024–33.10.1016/S1473-3099(15)00137-1CrossRefGoogle ScholarPubMed
McCormick, JB, Webb, PA, Krebs, JW et al. A prospective study of the epidemiology and ecology of Lassa fever. J Infect Dis. 1987a; 155: 437–44.10.1093/infdis/155.3.437CrossRefGoogle ScholarPubMed
McCormick, JB, King, IJ, Webb, PA et al. A case-control study of the clinical diagnosis and course of Lassa fever. J Infect Dis. 1987b; 155: 445–55.CrossRefGoogle ScholarPubMed
Olschläger, S, Lelke, M, Emmerich, P et al. Improved detection of Lassa virus by reverse transcription-PCR targeting the 5’ region of S RNA. J Clin Microbiol. 2010; 48(6): 2009 –13. doi: 10.1128/JCM.02351-09.Google Scholar
Petrova, V, Kristiansen, P, Norheim, G et al. Rift Valley fever: diagnostic challenges and investment needs for vaccine development. BMJ Glob Health 2020; 5(8): e002694. doi: 10.1136/bmjgh-2020-002694.CrossRefGoogle ScholarPubMed
Pleet, ML, DeMarino, C, Lepene, B, Aman, MJ, Kashanchi, F. The role of exosomal VP40 in Ebola virus disease. DNA Cell Biol. 2017; 36(4): 243–8.10.1089/dna.2017.3639CrossRefGoogle ScholarPubMed
van Schalkwyk, A, Romito, M. Genomic characterization of Rift Valley fever virus, South Africa, 2018. Emerg Infect Dis. 2019; 25(10): 1979–81. doi: 10.3201/eid2510.181748.CrossRefGoogle ScholarPubMed
Seufi, AM, Galal, FH. Role of Culex and Anopheles mosquito species as potential vectors of Rift Valley fever virus in Sudan outbreak, 2007. BMC Infect Dis. 2010; 10, 65. https://doi.org/10.1186/1471-2334-10-65.Google Scholar
Takah, NF, Brangel, P, Shrestha, P. et al. Sensitivity and specificity of diagnostic tests for Lassa fever: a systematic review. BMC Infect Dis. 2019; 19, 647. https://doi.org/10.1186/s12879-019-4242-6.CrossRefGoogle ScholarPubMed
Velasquez, GE, Aibana, O, Ling, EJ et al. Time from infection to disease and infectiousness for Ebola virus disease: a systematic review. Clin Infect Dis. 2015; 61(7): 1135–40.10.1093/cid/civ531CrossRefGoogle ScholarPubMed
WHO. Clinical management of patients with viral haemorrhagic fever: a pocket guide for front-line health care workers, 2016; Geneva: WHO.Google Scholar
WHO. Annual review of diseases prioritized under the Research and Development Blueprint. 2018; Geneva: WHO.Google Scholar
WHO. Optimized supportive care for Ebola virus disease: clinical management standard operating procedures. 2019; Geneva: WHO.Google Scholar

Key Resources

Bah, EI, Lamah, MC, Fletcher, T et al. Clinical presentation of patients with Ebola virus disease in Conakry, Guinea. N Engl J Med. 2015; 372(1):40–7.10.1056/NEJMoa1411249CrossRefGoogle ScholarPubMed
Bente, DA, Forrester, NL, Watts, DM et al. Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res. 2013; 100(1): 159–89.10.1016/j.antiviral.2013.07.006CrossRefGoogle ScholarPubMed
Davis, C, Tipton, T, Sabir, S et al. Postexposure prophylaxis with rVSV-ZEBOV following exposure to a patient with Ebola virus disease relapse in the United Kingdom: an operational, safety, and immunogenicity report. Clin Infect Dis. 2020; 71(11): 2872–9.Google ScholarPubMed
Filoviruses: Journal of Infectious Diseases; 196: Suppl. 2, 2007. This supplement collects a range of papers on all aspects of filovirus research, and in-depth description of the outbreak response to the Uige Marburg epidemic.Google Scholar
Gargili, A, Estrada-Peña, A, Spengler, JR et al. The role of ticks in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus: a review of published field and laboratory studies. Antiviral Res. 2017; 144: 93119.CrossRefGoogle ScholarPubMed
Henao-Restrepo, AM, Camacho, A, Longini, IM et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet 2017; 389(10068): 505–18. doi: 10.1016/S0140-6736(16)32621-6.CrossRefGoogle ScholarPubMed
Hoogstraal, H. The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. J Med Entomol. 1979; 15(4): 307417.10.1093/jmedent/15.4.307CrossRefGoogle ScholarPubMed
Journal of Infectious Diseases; 179: Suppl. 1, 1999. This is a special edition reporting all epidemiological, clinical, virological and laboratory data collected during the Ebola outbreak in Kikwit, DRC, 1995. This is available free at www.journals.uchicago.edu/JID/journal/contents/v179nS1.Html.Google Scholar
Juan-Giner, A, Kimathi, D, Grantz, KH et al. Immunogenicity and safety of fractional doses of yellow fever vaccines: a randomised, double-blind, non-inferiority trial. Lancet 2021; 397(10269): 119–27. doi: 10.1016/S0140-6736(20)32520-4.CrossRefGoogle ScholarPubMed
Kallas, EG, Wilder-Smith, A. Managing severe yellow fever in the intensive care: lessons learnt from Brazil. J Travel Med. 2019; 26(5): taz043. doi: 10.1093/jtm/taz043.Google ScholarPubMed
Low, JG, Ng, JHJ, Ong, EZ et al. Phase 1 trial of a therapeutic anti-yellow fever virus human antibody. N Engl J Med. 2020; 383(5): 452–9. doi: 10.1056/NEJMoa2000226.Google ScholarPubMed
Messina, JP, Pigott, DM, Duda, KA et al. A global compendium of human Crimean–Congo haemorrhagic fever virus occurrence. Sci Data 2015; 2: 150016.10.1038/sdata.2015.16CrossRefGoogle ScholarPubMed
Mulangu, S, Dodd, LE, Davey, RT Jr et al. A randomized, controlled trial of Ebola virus disease therapeutics. N Engl J Med. 2019; 381(24): 2293–303. doi: 10.1056/NEJMoa1910993.CrossRefGoogle ScholarPubMed
Paweska, JT, Sewlall, NH, Ksiazek, TG et al. Outbreak control and investigation teams. Nosocomial outbreak of novel arenavirus infection, southern Africa. Emerg Infect Dis. 2009;15(10): 1598–602. doi: 10.3201/eid1510.090211.Google Scholar
Spengler, JR, Bente, DA, Bray, M et al. Second International Conference on Crimean-Congo Hemorrhagic Fever. Antiviral Res. 2018; 150: 137–47.10.1016/j.antiviral.2017.11.019CrossRefGoogle ScholarPubMed
Temur, AI, Kuhn, JH, Pecor, DB et al. Epidemiology of Crimean-Congo hemorrhagic fever (CCHF) in Africa – underestimated for decades. Am J Trop Med Hygiene 2021; 104(6): 1978–90.10.4269/ajtmh.20-1413CrossRefGoogle ScholarPubMed
Thorson, AE, Deen, GF, Bernstein, KT et al. Persistence of Ebola virus in semen among Ebola virus disease survivors in Sierra Leone: a cohort study of frequency, duration, and risk factors. PLoS Med. 2021; 18(2): e1003273. doi: 10.1371/journal.pmed.1003273.CrossRefGoogle ScholarPubMed
WHO (1997). WHO guidelines for epidemic preparedness and response: Ebola haemorrhagic fever (EHF). WHO Document: WHO/EMC/ DIS/97.7.Google Scholar

Bibliography

CDC. Transmission of yellow fever virus. www.cdc.gov/yellowfever/transmission/index.html.Google Scholar
de Menezes Martins, R., Maia, M. de L. S., de Lima, S. M. B. et al. (2018). Duration of post-vaccination immunity to yellow fever in volunteers eight years after a dose-response study. Vaccine, 36(28), 41124117. doi.org/10.1016/j.vaccine.2018.05.041.CrossRefGoogle ScholarPubMed
Garske, T., van Kerkhove, M. D., Yactayo, S. et al. (2014). Yellow fever in Africa: Estimating the burden of disease and impact of mass vaccination from outbreak and serological data. PLoS Medicine, 11(5), e1001638. doi.org/10.1371/journal.pmed.1001638.CrossRefGoogle ScholarPubMed
Juan-Giner, A., Kimathi, D., Grantz, K. H. et al. (2021). Immunogenicity and safety of fractional doses of yellow fever vaccines: a randomised, double-blind, non-inferiority trial. Lancet, 397(10269), 119127. doi.org/10.1016/S0140-6736(20)32520-4.CrossRefGoogle ScholarPubMed
Mokaya, J., Kimathi, D., Lambe, T. & Warimwe, G.M. (2021). What constitutes protective immunity following yellow fever vaccination? Vaccines, 9(6), 671. doi.org/10.3390/vaccines9060671.CrossRefGoogle ScholarPubMed
Monath, T. P. (2001). Yellow fever: an update. Lancet Infectious Diseases, 1(1), 1120. doi.org/10.1016/S1473-3099(01)00016-0.CrossRefGoogle ScholarPubMed
Strode, G.K., Bugher, J.C. & Kerr, J.A. (1951). In Strode, G. K. (ed.) Yellow Fever. New York: McGraw-Hill Book Co.Google Scholar
WHO (2008). Detection and investigation of serious adverse events following yellow fever vaccination. https://apps.who.int/iris/bitstream/handle/10665/70251/WHO_HSE_GAR_ERI_2010.2_eng.pdf?sequence=1.Google Scholar
WHO (2013). Weekly epidemiological record: vaccines and vaccination against yellow fever. www.who.int/wer.Google Scholar
WHO (2017). Eliminate yellow fever epidemics by 2026 (EYE). www.who.int/csr/disease/yellowfev/eye-strategy-one-pager.pdf.Google Scholar

Bibliography

Bruha, R., Dvorak, K., Petrtyl, J. (2012). Alcoholic liver disease. World J Hepatol. 4(3): 8190.10.4254/wjh.v4.i3.81CrossRefGoogle ScholarPubMed
Elsharkawy, A., El-Raziky, M., El-Akel, W. et al. (2018). Planning and prioritizing direct-acting antivirals treatment for HCV patients in countries with limited resources: lessons from the Egyptian experience. J Hepatol. 68: 691698.10.1016/j.jhep.2017.11.034CrossRefGoogle ScholarPubMed
Francis, J.M., Grosskurth, H., Changalucha, J. et al. (2014). Systematic review and meta-analysis: prevalence of alcohol use among young people in eastern Africa. Trop Med Int Health 19(4): 476488.10.1111/tmi.12267CrossRefGoogle ScholarPubMed
GBD 2017 Cirrhosis Collaborators (2020) The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 5(3): 245266.Google Scholar
Koff, R.S. (1998). Hepatitis, A. Lancet 351(9116): 16431649.Google Scholar
Omotayo, O.P., Omotayo, A.O., Mwanza, M. et al. (2019). Prevalence of mycotoxins and their consequences on human health. Toxicol Res. 35(1): 17.10.5487/TR.2019.35.1.001CrossRefGoogle ScholarPubMed
Stockdale, A.J., Chaponda, M. Beloukas, A. et al. (2017). Prevalence of hepatitis D virus infection in sub-Saharan Africa: a systematic review and meta-analysis. The Lancet Global Health, 5(10): e992e1003.10.1016/S2214-109X(17)30298-XCrossRefGoogle ScholarPubMed
Waked, I., Esmat, G., Elsharkawy, A. et al. (2020). Screening and treatment program to eliminate hepatitis C in Egypt. N Engl J Med. 382(12): 11661174.10.1056/NEJMsr1912628CrossRefGoogle ScholarPubMed
WHO (2015). Guidelines for the prevention, care and treatment of persons with chronic hepatitis B infection. www.who.int/publications/i/item/9789241549059.Google Scholar
WHO (2018). Global status report on alcohol and health 2018. https://apps.who.int/iris/handle/10665/274603.Google Scholar

References

Balakrishnan, T. et al. (2011). Dengue virus activates polyreactive, natural IgG B cells after primary and secondary infection. PloS ONE 6(12). doi.org/10.1371/journal.pone.0029430.CrossRefGoogle ScholarPubMed
Bhatt, P. et al. (2021). Current understanding of the pathogenesis of dengue virus infection. Current Microbiology 78(1):1732.10.1007/s00284-020-02284-wCrossRefGoogle ScholarPubMed
Carrington, L. B. & Simmons, C. P. (2014). Human to mosquito transmission of dengue viruses. Frontiers in Immunology 5:290. doi.org/10.3389/fimmu.2014.00290.CrossRefGoogle ScholarPubMed
Chen, H. R., Lai, Y. C. & Yeh, T. M. (2018). Dengue virus non-structural protein 1: a pathogenic factor, therapeutic target, and vaccine candidate. Journal of Biomedical Science 25(1):58.10.1186/s12929-018-0462-0CrossRefGoogle ScholarPubMed
Etymologia: dengue. (2006). Centers for Disease Control and Prevention (CDC), Emerging Infectious Diseases 12(6):893.Google Scholar
Fritzell, C. et al. (2018). Current challenges and implications for dengue, chikungunya and Zika seroprevalence studies worldwide: a scoping review. PLoS Neglected Tropical Diseases 12(7):e0006533.10.1371/journal.pntd.0006533CrossRefGoogle ScholarPubMed
Guzman, M. G. et al. (2010). Dengue: a continuing global threat. Nature Reviews Microbiology 8(12):S7S16.10.1038/nrmicro2460CrossRefGoogle ScholarPubMed
Hadinegoro, S. R. S. (2012). The revised WHO dengue case classification: does the system need to be modified? Paediatrics and International Child Health 32(s1):3338.CrossRefGoogle ScholarPubMed
Halstead, S. M. (2017). Dengue and dengue hemorrhagic fever. In Handbook of Zoonoses, 2nd ed. Section B: Viral Zoonoses, 8999. Baco Raton: CRC Press.Google Scholar
Jaenisch, T. et al. (2014). Dengue expansion in Africa—not recognized or not happening? Emerging Infectious Diseases 20(10). doi: 10.3201/eid2010.140487.CrossRefGoogle ScholarPubMed
Kuhn, R. J. et al. (2002). Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108(5):717725.10.1016/S0092-8674(02)00660-8CrossRefGoogle ScholarPubMed
Lee, J.-S. et al. (2019). A multi-country study of the economic burden of dengue fever based on patient-specific field surveys in Burkina Faso, Kenya, and Cambodia. PLOS Neglected Tropical Diseases 13(2). doi.org/10.1371/journal.pntd.0007164.CrossRefGoogle Scholar
Nedjadi, T. et al. (2015). Tackling dengue fever: current status and challenges. Virology Journal 12:212.10.1186/s12985-015-0444-8CrossRefGoogle ScholarPubMed
PAHO. (2020). Algorithms for the Clinical Management of Dengue Patients. www.paho.org/en/documents/algorithms-clinical-management-dengue-patients.Google Scholar
Peeling, R. W. et al. (2010). Evaluation of diagnostic tests: dengue. Nature Reviews Microbiology. 8(12):S30S38.10.1038/nrmicro2459CrossRefGoogle ScholarPubMed
Pinheiro-Michelsen, J. R. et al. (2020). Anti-dengue vaccines: from development to clinical trials. Frontiers in Immunology 11:1252.10.3389/fimmu.2020.01252CrossRefGoogle ScholarPubMed
Rivino, L. et al. (2015). Virus-specific T lymphocytes home to the skin during natural dengue infection. Science Translational Medicine 7(278):278ra35.10.1126/scitranslmed.aaa0526CrossRefGoogle Scholar
Screaton, G. et al. (2015). New insights into the immunopathology and control of dengue virus infection. Nature Reviews Immunology 15:745759.10.1038/nri3916CrossRefGoogle ScholarPubMed
Silva, N. M., Santos, N. C. & Martins, I. C. (2020). Dengue and zika viruses: epidemiological history, potential therapies, and promising vaccines. Tropical Medicine and Infectious Disease 5(4). doi: 10.3390/tropicalmed5040150.CrossRefGoogle ScholarPubMed
St. John, A. L. & Rathore, A. P. S. (2019). Adaptive immune responses to primary and secondary dengue virus infections. Nature Reviews Immunology. 19:218230.10.1038/s41577-019-0123-xCrossRefGoogle ScholarPubMed
Troost, B. & Smit, J. M. (2020). Recent advances in antiviral drug development towards dengue virus. Current Opinion in Virology 43:921.10.1016/j.coviro.2020.07.009CrossRefGoogle ScholarPubMed
Warkentien, T. & Pavlicek, R. (2016). Dengue fever: historical perspective and the global response. Journal of Infectious Diseases and Epidemiology 2(2). doi: 10.23937/2474-3658/1510015.CrossRefGoogle Scholar
WHO. (2017). Global vector control response 2017–2030.Google Scholar
WHO. (2021). Dengue and severe dengue.Google Scholar
WHO. (2016). Laboratory testing for Zika virus infection: interim guidance.Google Scholar
Zeng, Z. et al. (2021). Global, regional, and national dengue burden from 1990 to 2017: a systematic analysis based on the global burden of disease study 2017. EClinicalMedicine 32:100712.10.1016/j.eclinm.2020.100712CrossRefGoogle ScholarPubMed

References

Awasthi, M., Parmar, H., Patankar, T. et al. (2001). Imaging findings in rabies encephalitis. Am J Neuroradiology, 22 (4): 677680.Google ScholarPubMed
Begeman, L., GeurtsvanKessel, C., Finke, S. et al. (2018). Comparative pathogenesis of rabies in bats and carnivores, and implications for spillover to humans. Lancet Inf Dis, 18(4): e147e159. doi: 10.1016/S1473-3099(17)30574-1.CrossRefGoogle ScholarPubMed
Burdon Bailey, J. L., Gamble, L., Gibson, A. D. et al. (2018). A rabies lesson improves rabies knowledge amongst primary school children in Zomba, Malawi. PLoS Negl Trop Dis, 12(3): e0006293. https://doi.org/10.1371/journal.pntd.0006293CrossRefGoogle ScholarPubMed
Howlett, W. P. (2015). Rabies. In Neurology in Africa, 141144. Cambridge: Cambridge University Press.10.1017/CBO9781316287064CrossRefGoogle Scholar
Jibat, T., Hogeveen, H., Mourits, M. C. M. (2015). Review on dog rabies vaccination coverage in Africa: a question of dog accessibility or cost recovery? PLoS Negl Trop Dis, 9(2): e0003447. doi: 10.1371/journal.pntd.0003447.CrossRefGoogle ScholarPubMed
Lembo, T., Hampson, K., Haydon, D. T. et al. (2008). Exploring reservoir dynamics: a case study of rabies in the Serengeti ecosystem. J Appl Ecol, 45(4): 12461257. doi: 10.1111/j.1365-2664.2008.01468.x.CrossRefGoogle ScholarPubMed
Mallewa, M., Fooks, A. R., Banda, D. et al. (2007). Rabies encephalitis in malaria-endemic area, Malawi, Africa. Emerging Infectious Diseases, 13(1). doi: 10.3201/eid1301.060810.CrossRefGoogle ScholarPubMed
Mulipukwa, C. P., Mudenda, B., Mbewe, A. R. (2017). Insights and efforts to control rabies in Zambia: evaluation of determinants and barriers to dog vaccination in Nyimba district. PLoS Negl Trop Dis, 11(10): e0005946. doi.org/10.1371/journal.pntd.0005946.CrossRefGoogle ScholarPubMed
Octaria, R., Salyer, S. J., Blanton, J. et al. (2018). From recognition to action: a strategic approach to foster sustainable collaborations for rabies elimination. PLoS Negl Trop Dis, 12(10): e0006756. doi.org/10.1371/journal.pntd.0006756.CrossRefGoogle Scholar
Shim, E., Hampson, K., Cleaveland, S. et al. (2009). Evaluating the cost-effectiveness of rabies post-exposure prophylaxis: a case study in Tanzania. Vaccine, 27(51), 71677172. doi.org/10.1016/j.vaccine.2009.09.027.CrossRefGoogle ScholarPubMed
Swanepoel, R., Barnard, B. J., Meredith, C. D. et al. (1993). Rabies in southern Africa. J Vet Res, 60(4): 325346. PMID: 7777317.Google ScholarPubMed
Théordoidès, J. (1986). Histoire de la Rage. Cave canem. Paris: Masson.Google Scholar
Yizengawet, E., Tamyalew, G., Mulu, W. et al. (2018). Incidence of human rabies virus exposure in northwestern Amhara, Ethiopia. BMC Infectious Diseases, 18: 597. doi.org/10.1186/s12879-018-3500-3.CrossRefGoogle Scholar

References

Aston, SJ, Ho, A, Jary, H et al. Etiology and risk factors for mortality in an adult community-acquired pneumonia cohort in Malawi. Am J Resp Crit Care Med. 2019;200:359–69.Google Scholar
Barr IG, Subbarao K. Implications of the apparent extinction of B/Yamagata-lineage human influenza viruses. Nature. 2024;9:219.Google Scholar
Bonacina F, Boelle P-Y, Colizza V et al. Global patterns and drivers of influenza decline during the COVID-19 pandemic. Int J Infect Dis. 2023;128:132–9.10.1016/j.ijid.2022.12.042CrossRefGoogle Scholar
Centers for Disease Control and Prevention. Different Types of Flu Vaccines. CDC. 2019. www.cdc.gov/flu/prevent/different-flu-vaccines.htm.Google Scholar
Cohen, C, Simonsen, L, Kang, JW et al. Elevated influenza-related excess mortality in South African elderly individuals, 1998–2005. Clin Infect Dis. 2010;51(12):1362–9.10.1086/657314CrossRefGoogle ScholarPubMed
Cohen, C, Moyes, J, Tempia, S et al. Severe influenza-associated respiratory infection in high HIV prevalence setting, South Africa, 2009–2011. Emerg Infect Dis. 2013;19(11):1766–74.10.3201/eid1911.130546CrossRefGoogle ScholarPubMed
Cohen, C, Walaza, S, Moyes, J et al. Epidemiology of severe acute respiratory illness (SARI) among adults and children aged ≥5 years in a high HIV-prevalence setting, 2009–2012. PLoS ONE 2015a;10(2):2009–12.Google Scholar
Cohen, C, Moyes, J, Tempia, S, Groome, M et al. Mortality amongst patients with influenza-associated severe acute respiratory illness, South Africa, 2009–2013. PLoS ONE 2015b;10(3):e0118884.10.1371/journal.pone.0118884CrossRefGoogle ScholarPubMed
Cohen, C, Walaza, S, Treurnicht, FK et al. In and out-of-hospital mortality associated with seasonal and pandemic influenza and respiratory syncytial virus in South Africa, 2009–2013. Clin Infect Dis. 2018;66(1):95103.10.1093/cid/cix740CrossRefGoogle ScholarPubMed
Cohen, C, Tshangela, A, Valley-Omar, Z et al. Household transmission of seasonal influenza from HIV-infected and HIV-uninfected individuals in South Africa, 2013–2014. J Infect Dis. 2019;219(10):1605–15.10.1093/infdis/jiy702CrossRefGoogle ScholarPubMed
Cohen, C, Kleynhans, J, Moyes, J et al. Asymptomatic transmission and high community burden of seasonal influenza in an urban and a rural community in South Africa, 2017–18 (PHIRST): a population cohort study. 2021;18:863–74.Google Scholar
Dawa, JA, Chaves, SS, Nyawanda, B et al. National burden of hospitalized and non-hospitalized influenza-associated severe acute respiratory illness in Kenya, 2012–2014. Influenza Other Respi Viruses. 2018;12(1):30–7.10.1111/irv.12488CrossRefGoogle ScholarPubMed
Dia, N, Richard, V, Kiori, D et al. Respiratory viruses associated with patients older than 50 years presenting with ILI in Senegal, 2009 to 2011. BMC Infect Dis. 2014;14(1):27.10.1186/1471-2334-14-189CrossRefGoogle ScholarPubMed
Duque, J, McMorrow, ML, Cohen, AL. Influenza vaccines and influenza antiviral drugs in Africa: are they available and do guidelines for their use exist? BMC Public Health 2014;14(1):15.10.1186/1471-2458-14-41CrossRefGoogle Scholar
Ebell, MH, White, LL, Casault, T. A systematic review of the history and physical examination to diagnose influenza. J Am Board Fam Pract. 2004;17(1):15.10.3122/jabfm.17.1.1CrossRefGoogle ScholarPubMed
Green, A. Progress in influenza surveillance in Africa. Lancet 2018;391(10128):1345–6. http://dx.doi.org/10.1016/S0140-6736(18)30713-X.CrossRefGoogle ScholarPubMed
Hirve, S, Newman, LP, Paget, J, Azziz-Baumgartner, E. Influenza seasonality in the tropics and subtropics – when to vaccinate? PLoS ONE 2016. doi.org/10.1371/journal.pone.0153003.CrossRefGoogle Scholar
Ho, A, Aston, SJ, Jary, H et al. Impact of human immunodeficiency virus on the burden and severity of influenza illness in Malawian adults: a prospective cohort and parallel case-control study. Clin Infect Dis. 2018;66(6):865–76.10.1093/cid/cix903CrossRefGoogle ScholarPubMed
Iuliano, AD, Roguski, KM, Chang, HH et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet 2018;391(10127):1285–300.10.1016/S0140-6736(17)33293-2CrossRefGoogle ScholarPubMed
Kim, H, Webster, RG, Webby, RJ. Influenza virus: dealing with a drifting and shifting pathogen. Viral Immunol. 2018;31(2):174–83.10.1089/vim.2017.0141CrossRefGoogle ScholarPubMed
Klein, EY, Monteforte, B, Gupta, A et al. The frequency of influenza and bacterial coinfection: a systematic review and meta-analysis. Influenza Other Resp Viruses 2016;10(5):394403.10.1111/irv.12398CrossRefGoogle ScholarPubMed
Koegelenberg, CFN, Irusen, EM, Cooper, R et al. High mortality from respiratory failure secondary to swine-origin influenza A (H1N1) in South Africa. QJM. 2010;103(5):319–25.10.1093/qjmed/hcq022CrossRefGoogle ScholarPubMed
Lamb, YN. Cell-based quadrivalent inactivated influenza virus vaccine (Flucelvax® Tetra/Flucelvax Quadrivalent®): a review in the prevention of influenza. Drugs 2019;79(12):1337–48. doi.org/10.1007/s40265-019-01176-z.Google ScholarPubMed
Long, JS, Mistry, B, Haslam, SM, Barclay, WS. Host and viral determinants of influenza A virus species specificity. Nat Rev Microbiol. 2019;17(2):6781. doi.org/10.1038/s41579-018-0115-z.CrossRefGoogle ScholarPubMed
Maartens, G, Griesel, R, Dube, F, Nicol, M, Mendelson, M. Etiology of pulmonary infections in human immunodeficiency virus – infected inpatients using sputum multiplex real-time polymerase chain reaction. Clin Infect Dis. 2019. doi: 10.1093/cid/ciz332.CrossRefGoogle Scholar
Merckx, J, Wali, R, Schiller, I et al. Diagnostic accuracy of novel and traditional rapid tests for influenza infection compared with reverse transcriptase polymerase chain reaction. Ann Intern Med. 2017;167(6):395409.10.7326/M17-0848CrossRefGoogle ScholarPubMed
Ope, MO, Katz, MA, Aura, B et al. Risk factors for hospitalized seasonal influenza in rural Western Kenya. PLoS ONE 2011. doi.org/10.1371/journal.pone.0020111.CrossRefGoogle Scholar
Petrova, VN, Russell, CA. The evolution of seasonal influenza viruses. Nat Rev Microbiol. 2018;16(1):4760. doi.org/10.1038/nrmicro.2017.118.CrossRefGoogle ScholarPubMed
Radin, JM, Katz, MA, Tempia, S et al. Influenza surveillance in 15 countries in Africa, 2006–2010. J Infect Dis. 2012;206(Suppl. 1):2006–10.Google ScholarPubMed
Rajaram, S, Boikos, C, Gelone, DK. Influenza vaccines: the potential benefits of cell-culture isolation and manufacturing. Ther Adv Vaccines Immunother. 2020. doi: 10.1177/2515135520908121.CrossRefGoogle Scholar
Richard, M, Fouchier, RAM. Influenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential. FEMS Microbiol Rev. 2015;40(1):6885.10.1093/femsre/fuv039CrossRefGoogle ScholarPubMed
Schoen, K, Horvat, N, Guerreiro, NFC, De Castro, I, De Giassi, KS. Spectrum of clinical and radiographic findings in patients with diagnosis of H1N1 and correlation with clinical severity. BMC Infect Dis. 2019;19(1). doi.org/10.1186/s12879-019-4592-0.CrossRefGoogle ScholarPubMed
Scott, JAG, Hall, AJ, Muyodi, C et al. Aetiology, outcome, and risk factors for mortality among adults with acute pneumonia in Kenya. Lancet 2000;355:1225–30. doi: 10.1016/s0140-6736(00)02089-4.Google ScholarPubMed
Sellers, SA, Hagan, RS, Hayden, FG, Fischer, WA. The hidden burden of influenza: a review of the extra-pulmonary complications of influenza infection. Influenza Other Resp Viruses 2017;11(5):372–93.10.1111/irv.12470CrossRefGoogle ScholarPubMed
Steffen, C, Diop, OM, Gessner, BD et al. Afriflu – International conference on influenza disease burden in Africa, 1–2 June 2010, Marrakech, Morocco. Vaccine 2011;29(3):363–9.10.1016/j.vaccine.2010.11.029CrossRefGoogle ScholarPubMed
Talbot, HK. Influenza in older adults. Infect Dis Clin North Am. 2017;31(4):757–66. doi.org/10.1016/j.idc.2017.07.005.CrossRefGoogle ScholarPubMed
Tan, J, Asthagiri Arunkumar, G, Krammer, F. Universal influenza virus vaccines and therapeutics: where do we stand with influenza B virus? Curr Opin Immunol. 2018; 53:4550.10.1016/j.coi.2018.04.002CrossRefGoogle ScholarPubMed
Tang, S, Zhu, W, Wang, BZ. Influenza vaccines toward universality through nanoplatforms and given by microneedle patches. Viruses 2020. doi: 10.3390/v12111212.CrossRefGoogle Scholar
Tempia, S, Walaza, S, Moyes, J et al. Risk factors for influenza-associated severe acute respiratory illness hospitalization in South Africa, 2012–2015. Open Forum Infect Dis. 2017;4(1):2012–15.10.1093/ofid/ofw262CrossRefGoogle ScholarPubMed
Tempia, S, Walaza, S, Viboud, C et al. Mortality associated with seasonal and pandemic influenza and respiratory syncytial virus among children 5 years of age in a high HIV prevalence setting – South Africa, 1998–2009. Clin Infect Dis. 2014;58(9):1241–9.10.1093/cid/ciu095CrossRefGoogle Scholar
Troeger, CE, Blacker, BF, Khalil, IA et al. Mortality, morbidity, and hospitalisations due to influenza lower respiratory tract infections, 2017: an analysis for the Global Burden of Disease Study 2017. Lancet Respir Med. 2019;7(1):6989.10.1016/S2213-2600(18)30496-XCrossRefGoogle Scholar
Uyeki, TM, Bernstein, HH, Bradley, JS et al. Clinical practice guidelines by the Infectious Diseases Society of America: 2018 update on diagnosis, treatment, chemoprophylaxis, and institutional outbreak management of seasonal influenza. Clin Infect Dis. 2019;68(6):e147. doi.org/10.1093/cid/ciy866.CrossRefGoogle Scholar
Walaza, S, Tempia, S, Dawood, H et al. The impact of influenza and tuberculosis interaction on mortality among individuals aged ≥15 years hospitalized with severe respiratory illness in South Africa, 2010–2016. Open Forum Infect Dis. 2019;6(3):2010–16.10.1093/ofid/ofz020CrossRefGoogle ScholarPubMed
WHO. A revision of the system of nomenclature for influenza viruses: a WHO memorandum. Bull World Health Organ. 1980;58(4):585–91.Google Scholar
WHO. Weekly epidemiological record: vaccines against influenza WHO position paper – November 2012. Wkly Epidemiol Rec. 2012;87(47):461–76. http://orton.catie.ac.cr/cgi-bin/wxis.exe/?IsisScript=KARDEX.xis&method=post&formato=2&cantidad=1&expresion=mfn=003687.Google Scholar
Yamayoshi, S, Kawaoka, Y. Current and future influenza vaccines. Nat Med. 2019;25(2):212–20. doi.org/10.1038/s41591-018-0340-z.CrossRefGoogle ScholarPubMed

References

Centers for Disease Control and Prevention (2013). Progress toward poliomyelitis eradication – Nigeria, January 2007. www.cdc.gov/mmwr/preview/mmwrhtml/mm5734a4.htm.Google Scholar
Galasi, FM (2017). Poliomyelitis in Ancient Egypt? Neurological Sciences 38, 375.Google Scholar
Gonzalez, AR et al. (2017). Implementing the synchronized global switch from trivalent to bivalent oral polio vaccines—lessons learned from the global perspective. Journal of Infectious Diseases 216, S183S192.10.1093/infdis/jiw626CrossRefGoogle Scholar
Gumede, N et al. (2014). Phylogeny of imported and reestablished wild polioviruses in the Democratic Republic of the Congo from 2006 to 2011. Journal of Infectious Diseases 210, S361S367.10.1093/infdis/jiu375CrossRefGoogle ScholarPubMed
Gumede, N et al. (2018). Progress on the implementation of environmental surveillance in the African Region, 2011–2016. Journal of Immunological Sciences. www.immunologyresearchjournal.com/articles/progress-on-the-implementation-of-environmental-surveillance-in-the-african-region-20112016.html.10.29245/2578-3009/2018/si.1103CrossRefGoogle Scholar
Hamisu, AW et al. (2022). Characterizing environmental surveillance sites in Nigeria and their sensitivity to detect poliovirus and other enteroviruses. Journal of Infectious Diseases 225, 13771386. doi.org/10.1093/infdis/jiaa175.CrossRefGoogle ScholarPubMed
Hovi, T et al. (2012). Role of environmental poliovirus surveillance in global polio eradication and beyond. Epidemiology & Infection 140, 113.10.1017/S095026881000316XCrossRefGoogle ScholarPubMed
DA, Kalkowska et al. (2021). Updated characterization of outbreak response strategies for 2019–2029: impacts of using a novel type 2 oral poliovirus vaccine strain. Risk Analysis 41, 329348. doi: 10.1111/risa.13622.Google Scholar
Kohler, KA et al. (2002). Vaccine-associated paralytic poliomyelitis in India during 1999: decreased risk despite massive use of oral polio vaccine. Bulletin of the World Health Organization 80, 210216.Google ScholarPubMed
Macklin, GR et al. (2020). Evolving epidemiology of poliovirus serotype 2 following withdrawal of the type 2 oral poliovirus vaccine. https://researchonline.lshtm.ac.uk/id/eprint/4656527/1/combined%20v5.pdf.Google Scholar
Wassilak, S et al. (2011). Outbreak of Type 2 vaccine-derived poliovirus in Nigeria: emergence and widespread circulation in an underimmunized population. Journal of Infectious Diseases 203, 898909.10.1093/infdis/jiq140CrossRefGoogle Scholar
WHO (2015). Report of the SAGE Polio Working Group Meeting 7–8 September 2015. www.who.int/immunization/sage/meetings/2015/october/2_SAGE_WG_report_draft_Final_clean.pdf?ua=1.Google Scholar
WHO (2020a). Africa kicks out wild polio. www.africakicksoutwildpolio.com/.Google Scholar
WHO (2020b). Novel oral polio vaccine (nOPV2). https://polioeradication.org/nopv2/.Google Scholar
WHO AFRO (2018). Business case for WHO immunization activities on the African continent, 2018–2030. Brazzaville: World Health Organization.Google Scholar
Wolff, C et al. (2014). Progress toward laboratory containment of poliovirus after polio eradication. Journal of Infectious Diseases 210, S454S458.10.1093/infdis/jit821CrossRefGoogle ScholarPubMed

References

Arvin, A (1996). Varciella-zoster virus. Clin Microbiol Rev; 9: 361381.10.1128/CMR.9.3.361CrossRefGoogle Scholar
Bertran M, Andrews N, Davison C, et al (2023). Effectiveness of one dose of MVA–BN smallpox vaccine against mpox in England using the case-coverage method: an observational study. Lancet Infect Dis; 7: 828–83510.1016/S1473-3099(23)00057-9CrossRefGoogle Scholar
Centers for Disease Control and Prevention (2019). Monkeypox and Smallpox Vaccine Guidance. www.cdc.gov/poxvirus/monkeypox/clinicians/smallpox-vaccine.html.Google Scholar
Cevic M, Tomori O, Mbala P, et al. (2024). The 2023–2024 multi-source mpox outbreaks of Clade I MPXV in sub-Saharan Africa: Alarm bell for Africa and the World. IJID Reg, 12: 100397.Google Scholar
Colebunders, R, Mann, JM, Francis, H et al. (1988). Herpes zoster in African patients: a clinical predictor of human immunodeficiency virus infection. J Infect Dis; 157: 314318.10.1093/infdis/157.2.314CrossRefGoogle ScholarPubMed
Di Giulio, DB, Eckburg, PB (2004). Human monkeypox: an emerging zoonosis. Lancet Infect Dis; 4(1): 1525.10.1016/S1473-3099(03)00856-9CrossRefGoogle ScholarPubMed
Fine, PE, Jezek, Z, Grab, B, Dixon, H (1988). The transmission potential of monkeypox virus in human populations. Int J Epidemiol; 17(3): 643650.10.1093/ije/17.3.643CrossRefGoogle ScholarPubMed
Hussey, H, Abdullahi, L, Collins, J, Muloiwa, R, Hussey, G, Kagina, B (2017). Varicella zoster virus-associated morbidity and mortality in Africa – a systematic review. BMC Infect Dis; 17(1): 717.10.1186/s12879-017-2815-9CrossRefGoogle ScholarPubMed
Jezek, Z, Szczeniowski, M, Paluku, KM, Mutombo, M (1987). Human monkeypox: clinical features of 282 patients. J Infect Dis; 156: 293298.10.1093/infdis/156.2.293CrossRefGoogle ScholarPubMed
Kisalu, NK, Mokoli, JL (2017). Toward understanding the outcomes of monkeypox infection in human pregnancy. J Infect Dis; 216(7): 795797.10.1093/infdis/jix342CrossRefGoogle ScholarPubMed
Ogoina, D, Iroezindu, M, James, HI et al (2020). Clinical course and outcome of human monkeypox in Nigeria. Clin Infect Dis; 71(8): 210214.10.1093/cid/ciaa143CrossRefGoogle ScholarPubMed
Rimoin, AW, Mulembakani, PM, Johnston, SC et al. (2010). Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo. Proc Natl Acad Sci USA; 107(37): 1626216267.10.1073/pnas.1005769107CrossRefGoogle Scholar
Thornhill, JP, Barkati, S, Walmsley, S et al. Monkeypox virus infection in humans across 16 countries – April–June 2022. N Engl J Med 2022; 387(8): 679691.10.1056/NEJMoa2207323CrossRefGoogle ScholarPubMed
Varela, FH, Pinto, LA, Scotia, SC (2019). Global impact of varicella vaccination programs. Hum Vaccin Immunother; 15(3): 645657.10.1080/21645515.2018.1546525CrossRefGoogle ScholarPubMed
Yinka-Ogunleye, A, Aruna, O, Dahlat, M et al. (2019). Outbreak of human monkeypox in Nigeria in 2017–18: a clinical and epidemiological report. Lancet Infect Dis; 19(8): 872879.10.1016/S1473-3099(19)30294-4CrossRefGoogle ScholarPubMed

References

Best, J.M. 2007. Rubella. Seminars in Fetal and Neonatal Medicine, Congenital and Opportunistic Infections 12, 182192. doi.org/10.1016/j.siny.2007.01.017.CrossRefGoogle ScholarPubMed
Best, J.M., Enders, G. 2006. Laboratory diagnosis of rubella and congenital rubella. In Banatvala, J., Peckham, C. (eds) Perspectives in Medical Virology, Rubella Viruses, 3977. Elsevier. doi.org/10.1016/S0168-7069(06)15003-X.CrossRefGoogle Scholar
da Silva e Sá, G.R., Camacho, L.A.B., Siqueira, M.M., Stavola, M.S., Ferreira, D.A. 2006. Seroepidemiological profile of pregnant women after inadvertent rubella vaccination in the state of Rio de Janeiro, Brazil, 2001–2002. Rev Panam Salud Publica 19, 371378. doi.org/10.1590/s1020-49892006000600002.Google Scholar
Patel, M.K., Antoni, S., Danovaro-Holliday, M.C. et al. 2020. The epidemiology of rubella, 2007–18: an ecological analysis of surveillance data. Lancet Global Health 8, e1399e1407. doi.org/10.1016/S2214-109X(20)30320-X.CrossRefGoogle ScholarPubMed
Vynnycky, E., Adams, E.J., Cutts, F.T. et al. 2016. Using seroprevalence and immunisation coverage data to estimate the global burden of congenital rubella syndrome, 1996–2010: a systematic review. PLoS ONE 11, e0149160. doi.org/10.1371/journal.pone.0149160.CrossRefGoogle ScholarPubMed
WHO Regional Office for Africa. 2015. Regional strategic plan for immunization 20142020. www.afro.who.int/publications/regional-strategic-plan-immunization-2014-2020-0.Google Scholar

References

Azimi, P.H., Cramblett, H.G., Haynes, R.E. 1969. Mumps meningoencephalitis in children. JAMA 207, 509512. doi.org/10.1001/jama.1969.03150160021004.CrossRefGoogle ScholarPubMed
Galazka, A.M., Robertson, S.E., Kraigher, A. 1999. Mumps and mumps vaccine: a global review. Bull World Health Organ 77, 314.Google ScholarPubMed
Hilleman, M.R., Buynak, E.B., Weibel, R.E., Stokes, J. 1968. Live, attenuated mumps-virus vaccine. New Engl J Med 278, 227232. doi.org/10.1056/NEJM196802012780501.CrossRefGoogle ScholarPubMed
Hviid, A., Rubin, S., Mühlemann, K. 2008. Mumps. Lancet 371, 932944. doi.org/10.1016/S0140-6736(08)60419-5.CrossRefGoogle ScholarPubMed
Ong, G., Goh, K.T., Ma, S., Chew, S.K. 2005. Comparative efficacy of Rubini, Jeryl-Lynn and Urabe mumps vaccine in an Asian population. J Infect 51, 294298. doi.org/10.1016/j.jinf.2004.10.001.CrossRefGoogle Scholar
Vuori, M., Lahikainen, E.A., Peltonen, T. 1962. Perceptive deafness in connection with mumps. A study of 298 servicemen suffering from mumps. Acta Otolaryngol 55, 231236. doi.org/10.3109/00016486209127357.CrossRefGoogle Scholar

References

Docherty, AB, Harrison, EM, Green, CA et al. Features of 20 133 UK patients in hospital with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ 2020; 369: m1985.10.1136/bmj.m1985CrossRefGoogle ScholarPubMed
Eyre, DW, Taylor, D, Purver, M et al. Effect of COVID-19 vaccination on transmission of alpha and delta variants. N Engl J Med 2022. doi: 10.1056/NEJMoa2116597.CrossRefGoogle Scholar
Knight, SR, Ho, A, Pius, R et al. Risk stratification of patients admitted to hospital with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol: development and validation of the 4C Mortality Score. BMJ 2020; 370. doi: 10.1136/bmj.m3339.Google ScholarPubMed
The RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with COVID-19 – preliminary report. N Engl J Med 2020. doi: 10.1056/NEJMoa2021436.CrossRefGoogle Scholar
Zhu, N, Zhang, D, Wang, W et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020. doi: 10.1056/NEJMoa2001017.CrossRefGoogle Scholar

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×