This work shows that direct combustion of cotton gin waste (CGW) at cotton gins can profitably generate electricity. Many bioenergy processing centres emphasise very large-scale operations, which require a large and stable bio-stock supply that is not always available. Similarly, a small biorefinery processing gin trash at a cotton gin must wrestle with the high volatility of cotton yields and price variation in cotton and electricity. Fortunately, the smaller scale allows these risks to be somewhat countervailing. Low cotton yields allow the limited gin trash available to be applied to the highest peak electricity prices in winter. Similarly, high yields with low cotton prices generate revenue from power generation throughout high winter electric prices.
To assess the profitability of an onsite power plant requires high-resolution data. We utilise hourly electricity price data from 2010 to 2021 in West Texas and obtain a small data array of 15 years of gin trash at a medium-sized gin. Prior analyses have had neither. We leverage limited CGW data to better leverage generous electricity price data by generating a Bayesian distribution for CGW. We simulate 10,000 annual CGW outcomes and electricity prices. Using engineering parameters for combustion efficiency, we show the expected internal rates of return of 19–22% for a 1 MWe and a 2 MWe plant at a small gin. Simulations then compare economic returns to the variance of those returns, which allows the analyst to present to investors a frontier of stochastic dominant return outcomes (risk-returns trade-off) for plants of different sizes at different sized gins.