Let   $G$  be a symmetrizable indefinite Kac-Moody group over
 $G$  be a symmetrizable indefinite Kac-Moody group over   $\mathbb{C}$ . Let
 $\mathbb{C}$ . Let   $\text{T}{{\text{r}}_{{{\Lambda }_{1}}\,,\ldots ,\,}}\text{T}{{\text{r}}_{{{\Lambda }_{2n-l}}}}$  be the characters of the fundamental irreducible representations of
 $\text{T}{{\text{r}}_{{{\Lambda }_{1}}\,,\ldots ,\,}}\text{T}{{\text{r}}_{{{\Lambda }_{2n-l}}}}$  be the characters of the fundamental irreducible representations of   $G$ , defined as convergent series on a certain part
 $G$ , defined as convergent series on a certain part   ${{G}^{\text{tr}-\text{alg}}}\,\subseteq \,G$ . Following Steinberg in the classical case and Brüchert in the affine case, we define the Steinberg map
 ${{G}^{\text{tr}-\text{alg}}}\,\subseteq \,G$ . Following Steinberg in the classical case and Brüchert in the affine case, we define the Steinberg map   $\chi \,:=\,\left( \text{T}{{\text{r}}_{{{\Lambda }_{1}},\ldots ,}}\text{T}{{\text{r}}_{{{\Lambda }_{2n-l}}}} \right)$  as well as the Steinberg cross section
 $\chi \,:=\,\left( \text{T}{{\text{r}}_{{{\Lambda }_{1}},\ldots ,}}\text{T}{{\text{r}}_{{{\Lambda }_{2n-l}}}} \right)$  as well as the Steinberg cross section   $C$ , together with a natural parametrisation
 $C$ , together with a natural parametrisation   $\omega :{{\mathbb{C}}^{n}}\times {{\left( {{\mathbb{C}}^{\times }} \right)}^{n-l}}\to C$ . We investigate the local behaviour of
 $\omega :{{\mathbb{C}}^{n}}\times {{\left( {{\mathbb{C}}^{\times }} \right)}^{n-l}}\to C$ . We investigate the local behaviour of   $\text{ }\!\!\chi\!\!\text{ }$  on
 $\text{ }\!\!\chi\!\!\text{ }$  on   $C$  near
 $C$  near   $\omega \left( \,\left( 0,\ldots 0 \right)\,\times \,\left( 1,\ldots ,1 \right)\, \right)$ , and we show that there exists a neighborhood of
 $\omega \left( \,\left( 0,\ldots 0 \right)\,\times \,\left( 1,\ldots ,1 \right)\, \right)$ , and we show that there exists a neighborhood of   $\left( 0,...,0 \right)\,\,\times \,\,\left( 1,...,1 \right)$ , on which
 $\left( 0,...,0 \right)\,\,\times \,\,\left( 1,...,1 \right)$ , on which   $\text{ }\!\!\chi\!\!\text{ }\,\circ \,\omega $  is a regular analytical map, satisfying a certain functional identity. This identity has its origin in an action of the center of
 $\text{ }\!\!\chi\!\!\text{ }\,\circ \,\omega $  is a regular analytical map, satisfying a certain functional identity. This identity has its origin in an action of the center of   $G$  on
 $G$  on   $C$ .
 $C$ .