Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T14:46:51.823Z Has data issue: false hasContentIssue false

Magnitude, numerosity, and development of number: Implications for mathematics disabilities

Published online by Cambridge University Press:  27 July 2017

Nancy C. Jordan
Affiliation:
School of Education, University of Delaware, Newark, DE 19716njordan@udel.eduluke.rinne@g.mail.comhttps://sites.google.com/a/udel.edu/nancy-jordan/
Luke Rinne
Affiliation:
School of Education, University of Delaware, Newark, DE 19716njordan@udel.eduluke.rinne@g.mail.comhttps://sites.google.com/a/udel.edu/nancy-jordan/
Ilyse M. Resnick
Affiliation:
Department of Psychology, Penn State University–Lehigh Valley, Center Valley, PA 18034imr9@psu.edu

Abstract

Leibovich et al. challenge the prevailing view that non-symbolic number sense (e.g., sensing number the same way one might sense color) is innate, that detection of numerosity is distinct from detection of continuous magnitude. In the present commentary, the authors' viewpoint is discussed in light of the integrative theory of numerical development along with implications for understanding mathematics disabilities.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Butterworth, B. (1999) Perspectives: Neuroscience – A head for figures. Science 284(5416):928–29. doi: 10.1126/science.284.5416.928.CrossRefGoogle Scholar
Butterworth, B. (2005) The development of arithmetical abilities. Journal of Child Psychology and Psychiatry 46(1):318. doi: 10.1111/j.1469-7610.2004.00374.x.CrossRefGoogle ScholarPubMed
Butterworth, B. & Reigosa-Crespo, V. (2007) Information processing deficits in dyscalculia. In: Why is math so hard for some children? The nature and origins of mathematical learning difficulties and disabilities, ed. Berch, D. B. & Mazzocco, M. M. M., pp. 107–20. Paul H. Brookes.Google Scholar
Clarke, B. & Shinn, M. R. (2004) A preliminary investigation into the identification and development of early mathematics curriculum-based measurement. School Psychology Review 33(22):234–48.CrossRefGoogle Scholar
Dehaene, S. (1997) The number sense: How the mind creates mathematics. Oxford University Press.Google Scholar
Frye, D., Baroody, A. J., Burchinal, M., Carver, S. M., Jordan, N. C. & McDowell, J. (2013) Teaching math to young children: A practice guide (NCEE 2014-4005). U.S. Department of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance. Available at: http://ies.ed.gov/ncee/wwc/ pdf/practice_guides/early_math_pg_111313.pdf.Google Scholar
Hansen, N., Jordan, N. C., Fernandez, E., Siegler, R. S., Fuchs, L. S., Gersten, R. & Micklos, D. A. (2015) General and math-specific predictors of sixth-graders' knowledge of fractions. Cognitive Development 35:3449. doi: 10.1016/j.cogdev.2015.02.001.CrossRefGoogle Scholar
Hassinger-Das, B., Jordan, N. C., Glutting, J., Irwin, C. & Dyson, N. (2014) Domain general mediators of the relation between kindergarten number sense and first-grade mathematics achievement. Journal of Experimental Child Psychology 118:7892. doi: 10.1016/jcep.2013.09.008.CrossRefGoogle ScholarPubMed
Jordan, N. C. & Dyson, N. (2016) Catching math problems early: Findings from the number sense intervention project. In Continuous issues in numerical cognition: How many or how much? ed. Henik, A., pp. 6081. Elsevier.Google Scholar
Jordan, N. C., Hansen, N., Fuchs, L. S., Siegler, R. S., Gersten, R. & Micklos, D. (2013) Developmental predictors of fraction concepts and procedures. Journal of Experimental Child Psychology 116:4558. doi: 10.1016/j.jecp.2013.02.001.CrossRefGoogle ScholarPubMed
Landerl, K., Bevan, A. & Butterworth, B. (2004) Developmental dyscalculia and basic numerical capacities: A study of 8–9–year-old students. Cognition 93:99125. doi: 10.1016/j.cognition.2003.11.004.CrossRefGoogle ScholarPubMed
Matthews, P. G., Lewis, M. R. & Hubbard E. M. (2016) Individual differences in nonsymbolic ratio processing predict symbolic math performance. Psychological Science 27(2):191202. doi: 10.1177/0956797615617799.CrossRefGoogle ScholarPubMed
Mazzocco, M. M. M. & Thompson, R. E. (2005) Kindergarten predictors of math learning disability. Learning Disabilities Research & Practice 20(3):142–55. doi: 10.1111/j.1540-5826.2005.00129.x.CrossRefGoogle ScholarPubMed
McMullen, J., Hannula-Sormunen, M. M. & Lehtinen, E. (2015) Preschool spontaneous focusing on numerosity predicts rational number conceptual knowledge 6 years later. ZDM Mathematics Education 47(5):813–24. doi: 10.1007/s11858-015-0669-4.CrossRefGoogle Scholar
National Research Council (2009) Mathematics learning in early childhood: Paths toward excellence and equity, ed. Committee on Early Childhood Mathematics, Cross, C.T., Woods, T.A. & Schweingruber, H.. Center for Education, Division of Behavioral and Social Sciences and Education. National Academies Press.Google Scholar
Resnick, I., Jordan, N. C., Hansen, N., Rajan, V., Rodrigues, J., Siegler, R. S. & Fuchs, L. (2016) Developmental growth trajectories in understanding of fraction magnitude from fourth through sixth grade. Developmental Psychology 52(5):746–57. doi: 10.1037/dev0000102.CrossRefGoogle ScholarPubMed
Rinne, L., Ye, A. & Jordan, N. C. (2017) Development of fraction comparison strategies: A latent transition analysis. Developmental Psychology 53(4):713–30.CrossRefGoogle ScholarPubMed
Rousselle, L. & Noel, M. P. (2007) Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition 102:361–95. doi: 10.1016/j.cognition.2006.01.005.CrossRefGoogle ScholarPubMed
Siegler, R. S. & Lortie-Forgues, H. (2014) An integrative theory of numerical development. Child Development Perspectives 8(3):144–50. doi: 10.1111/cdep.12077.CrossRefGoogle Scholar
Zentall, S. S., Smith, Y. N., Lee, Y. B. & Wieczorek, C. (1994) Mathematical outcomes of attention-deficit/hyperactivity disorder. Journal of Learning Disabilities 27(8):510–19. doi:10.1177/002221949402700806.CrossRefGoogle ScholarPubMed