Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T15:30:05.378Z Has data issue: false hasContentIssue false

Meeting counterfactual causality criteria is not the problem

Published online by Cambridge University Press:  11 September 2023

Kristian E. Markon*
Affiliation:
Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA kristian-markon@uiowa.edu

Abstract

Counterfactual causal interpretations of family genetic effects are appropriate, but neglect an important feature: Provision of unique information about expected outcomes following an independent decision, such as a decision to intervene. Counterfactual causality criteria are unlikely to resolve controversies about behavioral genetic findings; such controversies are likely to continue until counterfactual inferences are translated into interventional hypotheses and designs.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anguela, X. M., & High, K. A. (2019). Entering the modern era of gene therapy. Annual Review of Medicine, 70(1), 273288. doi:10.1146/annurev-med-012017-043332CrossRefGoogle ScholarPubMed
Dawid, A. P. (2000). Causal inference without counterfactuals. Journal of the American Statistical Association, 95, 407424. doi:10.1080/01621459.2000.10474210CrossRefGoogle Scholar
Dawid, A. P. (2015). Statistical causality from a decision-theoretic perspective. Annual Review of Statistics and Its Application, 2(1), 273303. doi:10.1146/annurev-statistics-010814-020105CrossRefGoogle Scholar
Elam, K., Lemery-Chalfant, K., & Chassin, L. (in press). A gene–environment cascade theoretical framework of developmental psychopathology. Journal of Psychopathology and Clinical Science.Google Scholar
Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37, 424438.CrossRefGoogle Scholar
Janzing, D., Balduzzi, D., Grosse-Wentrup, M., & Schölkopf, B. (2013). Quantifying causal influences. Annals of Statistics, 41(5), 23242358. doi:10.1214/13-AOS1145CrossRefGoogle Scholar
Morris, T. T., Davies, N. M., & Davey Smith, G. (2020). Can education be personalised using pupils’ genetic data? eLife, 9, e49962. doi:10.7554/eLife.49962CrossRefGoogle ScholarPubMed
Saha, K., Sontheimer, E. J., Brooks, P. J., Dwinell, M. R., Gersbach, C. A., Liu, D. R., … Zhou, J. (2021). The NIH somatic cell genome editing program. Nature, 592(7853), 195204. doi:10.1038/s41586-021-03191-1CrossRefGoogle ScholarPubMed
Schreiber, T. (2000). Measuring information transfer. Physical Review Letters, 85, 461.CrossRefGoogle ScholarPubMed