Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T00:09:12.326Z Has data issue: false hasContentIssue false

Structured event complexes are the primary representation in the human prefrontal cortex

Published online by Cambridge University Press:  19 June 2020

Jordan Grafman*
Affiliation:
Cognitive Neuroscience Laboratory, Shirley Ryan AbilityLab, Think and Speak Lab, Chicago, IL60011-5146 Departments of Physical Medicine and Rehabilitation, Neurology, Psychiatry, and Alzheimer's Center and Cognitive Neurology, Northwestern University School of Medicine, Chicago, IL60611jgrafman@northwestern.edu Department of Psychology, Weinberg School of Arts and Sciences, Evanston, IL60208.

Abstract

Instead of endorsing an all-encompassing view about the influence of abstractions in predictive processing, I suggest that most deliberative thought including complex abstractions, agent actions, and/or perceived environmental sequences are stored in the human prefrontal cortex in the form of structured event complexes.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badre, D. & Nee, D. E. (2018) Frontal cortex and the hierarchical control of behavior. Trends in Cognitive Sciences 22(2):170–88. doi: doi:10.1016/j.tics.2017.11.005.CrossRefGoogle ScholarPubMed
Chapman, L. J. & Chapman, J. P. (1978) The measurement of differential deficit. Journal of Psychiatric Research 14(1–4):303311. doi: 10.1016/0022-3956(78)90034-1.CrossRefGoogle ScholarPubMed
Chapman, L. J. & Chapman, J. P. (2001) Commentary on two articles concerning generalized and specific cognitive deficits. Journal of Abnormal Psychology 110(1):3139. doi: 10.1037//0021-843x.110.1.31.CrossRefGoogle ScholarPubMed
Grafman, J., Spector, L. & Rattermann, M. J. (2005) Planning and the brain. Cognitive Psychology of Planning 181–98.Google Scholar
Grafman, J., Thompson, K., Weingartner, H., Martinez, R., Lawlor, B. A. & Sunderland, T. (1991) Script generation as an indicator of knowledge representation in patients with Alzheimer's disease. Brain Lang 40(3):344–58. doi: 10.1016/0093-934x(91)90134-m.CrossRefGoogle ScholarPubMed
Koechlin, E. & Jubault, T. (2006) Broca's area and the hierarchical organization of human behavior. Neuron 50(6):963–74. doi: 10.1016/j.neuron.2006.05.017.CrossRefGoogle ScholarPubMed
Miller, G. A., Galanter, E. & Pribram, K. H. (1986) Plans and the structure of behavior. Adams-Bannister-Cox.Google Scholar
Nichelli, P., Grafman, J., Pietrini, P., Alway, D., Carton, J. C. & Miletich, R. (1994) Brain activity in chess playing. Nature 369(6477):191. doi: 10.1038/369191a0.CrossRefGoogle ScholarPubMed
Nichelli, P., Grafman, J., Pietrini, P., Clark, K., Lee, K. Y. & Miletich, R. (1995) Where the brain appreciates the moral of a story. NeuroReport 6(17):23092313. doi: 10.1097/00001756-199511270-00010.CrossRefGoogle Scholar
Parr, T. & Friston, K. J. (2019) Generalised free energy and active inference. Biological Cybernetics. doi: 10.1007/s00422-019-00805-w.CrossRefGoogle ScholarPubMed
Radvansky, G. A. & Zacks, J. M. (2017) Event boundaries in memory and cognition. Current Opinion in Behavioral Sciences 17:133–40. doi: 10.1016/j.cobeha.2017.08.006.CrossRefGoogle ScholarPubMed
Rattermann, M. J., Spector, L., Grafman, J., Levin, H. & Harward, H. (2001) Partial and total-order planning: evidence from normal and prefrontally damaged populations. Cognitive Science 25(6):941–75, doi: 10.1016/S0364-0213(01)00060-X.CrossRefGoogle Scholar
Rosen, V. M., Caplan, L., Sheesley, L., Rodriguez, R. & Grafman, J. (2003) An examination of daily activities and their scripts across the adult lifespan. Behavior Research Methods, Instruments, & Computers 35(1):3248.CrossRefGoogle ScholarPubMed
Schank, R. C. & Abelson, R. P. (1977) Scripts, plans, goals, and understanding: an inquiry into human knowledge structures. L. Erlbaum Associates; distributed by the Halsted Press Division of John Wiley and Sons.Google Scholar
Sirigu, A., Zalla, T., Pillon, B., Grafman, J., Agid, Y. & Dubois, B. (1996) Encoding of sequence and boundaries of scripts following prefrontal lesions. Cortex 32(2):297310. doi: 10.1016/s0010-9452(96)80052-9.CrossRefGoogle ScholarPubMed
Wood, J. N. & Grafman, J. (2003) Human prefrontal cortex: processing and representational perspectives. Nature Reviews Neuroscience 4(2):139–47. doi: 10.1038/nrn1033.CrossRefGoogle ScholarPubMed
Zacks, J. M., Kurby, C. A., Landazabal, C. S., Krueger, F. & Grafman, J. (2016) Effects of penetrating traumatic brain injury on event segmentation and memory. Cortex 74:233–46. doi: 10.1016/j.cortex.2015.11.002.CrossRefGoogle ScholarPubMed