Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T23:43:59.285Z Has data issue: false hasContentIssue false

The bottleneck may be the solution, not the problem

Published online by Cambridge University Press:  02 June 2016

Arnon Lotem
Affiliation:
Department of Zoology, Tel Aviv University, Tel Aviv 6997801, Israellotem@post.tau.ac.il
Oren Kolodny
Affiliation:
Department of Biology, Stanford University, Stanford, CA 94305okolodny@stanford.edu
Joseph Y. Halpern
Affiliation:
Department of Computer Science, Cornell University, Ithaca, NY 14853halpern@cs.cornell.edu
Luca Onnis
Affiliation:
Division of Linguistics and Multilingual Studies, Nanyang Technological University, Singapore 637332lucao@ntu.edu.sg
Shimon Edelman
Affiliation:
Department of Psychology, Cornell University, Ithaca, NY 14853. se37@cornell.edu

Abstract

As a highly consequential biological trait, a memory “bottleneck” cannot escape selection pressures. It must therefore co-evolve with other cognitive mechanisms rather than act as an independent constraint. Recent theory and an implemented model of language acquisition suggest that a limit on working memory may evolve to help learning. Furthermore, it need not hamper the use of language for communication.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M. L. (2010) Neural reuse: A fundamental organizational principle of the brain. Behavioral and Brain Sciences 34:245–66.CrossRefGoogle Scholar
Blokland, G. A. M., McMahon, K. L., Thompson, P. M., Martin, N. G., de Zubicaray, G. I. & Wright, M. J. (2011) Heritability of working memory brain activation. The Journal of Neuroscience 31:10882–90.CrossRefGoogle ScholarPubMed
Burghardt, G. M. (1970) Defining “communication.” In: Communication by chemical signals, ed. Johnston, J. W. Jr., Moulton, D. G. & Turk, A., pp. 518. Appleton-Century-Crofts.Google Scholar
Chater, N. & Christiansen, M. H. (2010) Language acquisition meets language evolution. Cognitive Science 34:1131–57.Google Scholar
Cui, J., Gao, D., Chen, Y., Zou, X. & Wang, Y. (2010) Working memory in early-school-age children with Asperger's syndrome. Journal of Autism and Developmental Disorders 40:958–67.Google Scholar
Edelman, S. (2008a) Computing the mind: How the mind really works. Oxford University Press.Google Scholar
Edelman, S. (2008b) On the nature of minds, or: Truth and consequences. Journal of Experimental and Theoretical AI 20:181–96.Google Scholar
Edelman, S. (2015) The minority report: Some common assumptions to reconsider in the modeling of the brain and behavior. Journal of Experimental and Theoretical Artificial Intelligence 27, doi 10.1080/0952813X.2015.1042534.Google Scholar
Falconer, D. S. (1981) Introduction to quantitative genetics. Longman.Google Scholar
Goldstein, M. H., Waterfall, H. R., Lotem, A., Halpern, J., Schwade, J., Onnis, L. & Edelman, S. (2010) General cognitive principles for learning structure in time and space. Trends in Cognitive Sciences 14:249–58.Google Scholar
Green, S. & Marler, P. (1979) The analysis of animal communication. In: Handbook of behavioral neurobiology: Vol. 3. Social behavior and communication, ed. Marler, P. & Vandenbergh, J. G., pp. 73158. Plenum Press.Google Scholar
Kolodny, O., Edelman, S. & Lotem, A. (2014) The evolution of continuous learning of the structure of the environment. Journal of the Royal Society Interface 11:20131091.Google Scholar
Kolodny, O., Edelman, S. & Lotem, A. (2015a) Evolution of protolinguistic abilities as a by-product of learning to forage in structured environments. Proceedings of the Royal Society of London B 282(1811):20150353.Google Scholar
Kolodny, O., Lotem, A. & Edelman, S. (2015b) Learning a generative probabilistic grammar of experience: A process-level model of language acquisition. Cognitive Science 39:227–67.Google Scholar
Lachmann, M., Számadó, S. & Bergstrom, C. T. (2001) Cost and conflict in animal signals and human language. Proceedings of the National Academy of Science 98:13189–94.Google Scholar
Leger, D. W. (1993) Contextual sources of information and responses to animal communication signals. Psychological Bulletin 113:295304.CrossRefGoogle ScholarPubMed
Lind, J., Enquist, M. & Ghirlanda, S. (2015) Animal memory: A review of delayed matching-to-sample data. Behavioural Processes 117:5258.CrossRefGoogle ScholarPubMed
Lotem, A. & Halpern, J. Y. (2008) A data-acquisition model for learning and cognitive development and its implications for autism. Computing and information science technical reports, Cornell University. Available at: http://hdl.handle.net/1813/10178.Google Scholar
Lotem, A. & Halpern, J. Y. (2012) Coevolution of learning and data-acquisition mechanisms: A model for cognitive evolution. Philosophical Transactions of the Royal Society B 367:2686–94.Google Scholar
Menyhart, O., Kolodny, O., Goldstein, M. H., Devoogd, T. & Edelman, S. (2015) Juvenile zebra finches learn the underlying statistical regularities in their father's song. Frontiers in Psychology 6:571.Google Scholar
Mery, F., Belay, A. T., So, A. K., Sokolowski, M. B. & Kawecki, T. J. (2007) Natural polymorphism affecting learning and memory in Drosophila. Proceedings of the National Academy of Science 104:13051–55.Google Scholar
Mueller, S. T. & Krawitz, A. (2009) Reconsidering the two-second decay hypothesis in verbal working memory. Journal of Mathematical Psychology 53:1425.CrossRefGoogle Scholar
Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. (2003) Niche construction: The neglected process in evolution, vol. MPB 37. Princeton University Press.Google Scholar
Onnis, L. & Spivey, M. J. (2012) Toward a new scientific visualization for the language sciences. Information 3:124–50.Google Scholar
Onnis, L., Waterfall, H. R. & Edelman, S. (2008) Learn locally, act globally: Learning language from variation set cues. Cognition 109:423–30.CrossRefGoogle ScholarPubMed
Princeton, N. J. & Stromswold, K. (2001) The heritability of language: A review and metaanalysis of twin, adoption, and linkage studies. Language 77:647–23.Google Scholar
Solan, Z., Horn, D., Ruppin, E. & Edelman, S. (2005) Unsupervised learning of natural languages. Proceedings of the National Academy of Science 102:11629–34.Google Scholar
Stephens, D. W. & Krebs, J. R. (1986) Foraging theory. Princeton University Press.Google Scholar
van Soelen, I. L. C., Brouwer, R. M., van Leeuwen, M., Kahn, R. S., Hulshoff Pol, H. E. & Boomsma, D. I. (2011) Heritability of verbal and performance intelligence in a pediatric longitudinal sample. Twin Research and Human Genetics 14:119–28.Google Scholar
Vogler, C., Gschwind, L., Coyne, D., Freytag, V., Milnik, A., Egli, T., Heck, A., de Quervain, D. J. & Papassotiropoulos, A. (2014) Substantial SNP-based heritability estimates for working memory performance. Translational Psychiatry 4:e438.Google Scholar