Hostname: page-component-68c7f8b79f-7wx25 Total loading time: 0 Render date: 2026-01-01T12:31:32.349Z Has data issue: false hasContentIssue false

Considering REM sleep-like stages among the traits defining cognitively complex lineages

Published online by Cambridge University Press:  03 November 2025

Andrea Becchetti*
Affiliation:
Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy andrea.becchetti@unimib.it
*
*Corresponding author.

Abstract

Sleep stages resembling the REM and non-REM (NREM) phases observed in mammals and birds were recently found in other vertebrates, cephalopods, and euarthropods. REM sleep-like stages could mark a leap in cognitive evolution, by regulating the visuomotor elaboration that Coombs and Trestman deem essential for the cognitively complex lineages. The more widespread NREM sleep-like stages likely modulate metabolism and homeostasis of synaptic circuits.

Information

Type
Open Peer Commentary
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aracri, P., Amadeo, A., Pasini, M. E., Fascio, U., & Becchetti, A. (2013). Regulation of glutamate release by heteromeric nicotinic receptors in layer V of the secondary motor region (Fr2) in the dorsomedial shoulder of prefrontal cortex in mouse. Synapse, 67, 338357. https://doi.org/10.1002/syn.21655 CrossRefGoogle Scholar
Aracri, P., Consonni, S., Morini, R., Perrella, M., Rodighiero, S., Amadeo, A., & Becchetti, A. (2010). Tonic modulation of GABA release by nicotinic acetylcholine receptors, in layer V of the murine prefrontal cortex. Cerebral Cortex, 20, 15391555. https://doi.org/10.1093/cercor/bhp214 CrossRefGoogle Scholar
Aserinsky, E., & Kleitman, N. (1953). Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science, 118, 273274. https://doi.org/10.1126/science.118.3062.273 CrossRefGoogle ScholarPubMed
Bhattacharyya, A., Bießmann, F., Veit, J., Kretz, R., & Rainer, G. (2012). Functional and laminar dissociations between muscarinic and nicotinic cholinergic neuromodulation in the tree shrew primary visual cortex. European Journal of Neuroscience, 35, 12701280. https://doi.org/10.1111/j.1460-9568.2012.08052.x CrossRefGoogle ScholarPubMed
Blumberg, M. S., Dooley, J. C., & Tiriac, A. (2022). Sleep, plasticity, and sensory neurodevelopment. Neuron, 110, 32303242. https://doi.org/10.1016/j.neuron.2022.08.005 CrossRefGoogle ScholarPubMed
Blumberg, M. S., & Plumeau, A. M. (2016). A new view of “dream enactment” in REM sleep behavior disorder. Sleep Medicine Reviews, 30, 3442. https://doi.org/10.1016/j.smrv.2015.12.002 CrossRefGoogle Scholar
Brown, R. E., Basheer, R., McKenna, J. T., Strecker, R. E., & McCarley, R. W. (2012). Control of sleep and wakefulness. Physiological Reviews, 92, 10871187. https://doi.org/10.1152/physrev.00032.2011 CrossRefGoogle ScholarPubMed
Dement, W. (1958). The occurrence of low voltage, fast electroencephalogram patterns during behavioral sleep in the cat. Electroncephalography and Clinical Neurophysiology, 10, 291296. https://doi.org/10.1016/0013-4694(58)90037-3 CrossRefGoogle ScholarPubMed
Desai, N. S., & Walcott, E. C. (2006). Synaptic bombardment modulates muscarinic effects in forelimb motor cortex. Journal of Neuroscience, 26, 22152226. https://doi.org/10.1523/JNEUROSCI.4310-05.2006 CrossRefGoogle ScholarPubMed
Disney, A. A., Aoki, C., & Hawken, M. J. (2007). Gain modulation by nicotine in macaque v1. Neuron, 56, 701713. https://doi.org/10.1016/j.neuron.2007.09.034 CrossRefGoogle ScholarPubMed
Dworak, M., McCarley, R. W., Kim, T., Kalinchuk, A. V., & Basheer, R. (2010). Sleep and brain energy levels: ATP changes during sleep. Journal of Neuroscience, 30, 90079016. https://doi.org/10.1523/JNEUROSCI.1423-10.2010 CrossRefGoogle ScholarPubMed
Gil, Z., Connors, B. W., & Amitai, Y. (1997). Differential regulation of neocortical synapses by neuromodulators and activity. Neuron, 19, 679686. https://doi.org/10.1016/s0896-6273(00)80380-3 CrossRefGoogle ScholarPubMed
Hobson, J. A. (2009). REM sleep and dreaming: Towards a theory of protoconsciousness. Nature Reviews Neuroscience, 10, 803813. https://doi.org/10.1038/nrn2716 CrossRefGoogle ScholarPubMed
Iglesias, T. L., Boal, J. G., Frank, M. G., Zeil, J., & Hanlon, R. T. (2019). Cyclic nature of the REM sleep-like state in the cuttlefish Sepia officinalis . Journal of Experimental Biology, 222, jeb174862. https://doi.org/10.1242/jeb.174862 Google Scholar
Jouvet, M. (1965). Paradoxical sleep – A study of its nature and mechanisms. Progress in Brain Research, 18, 2062. https://doi.org/10.1016/s0079-6123(08)63582-7 CrossRefGoogle ScholarPubMed
Klinzing, J. G., Niethard, N., & Born, J. (2019). Mechanisms of systems memory consolidation during sleep. Nature Neuroscience, 22, 15981610. https://doi.org/10.1038/s41593-019-0467-3 CrossRefGoogle ScholarPubMed
Leung, L. C., Wang, G. X., Madelaine, R., Skariah, G., Kawakami, K., Deisseroth, K., Urban, A. E., & Mourrain, P. (2019). Neural signatures of sleep in zebrafish. Nature, 571, 198204. https://doi.org/10.1038/s41586-019-1336-7 CrossRefGoogle ScholarPubMed
Libourel, P. A. Barrillot, B., Arthaud, S., Massot, B., Morel, A. L., Beuf, O., HerrelA., & Luppi, P. H. (2018). Partial homologies between sleep states in lizards, mammals, and birds suggest a complex evolution of sleep states in amniotes. PLoS Biology, 16, e2005982. https://doi.org/10.1371/journal.pbio.2005982 CrossRefGoogle ScholarPubMed
Medeiros, S. L. D. S., Paiva, M. M. M., Lopes, P. H., Blanco, W., Lima, F. D., Oliveira, J. B. C., Medeiros, I. G., Sequerra, E. B., de Souza, S., Leite, T. S., & Ribeiro, S. (2021). Cyclic alternation of quiet and active sleep states in the octopus. iScience, 24, 102223. https://doi.org/10.1016/j.isci.2021.102223 CrossRefGoogle ScholarPubMed
Petersson, P., Waldenström, A., Fåhraeus, C., & Schouenborg, J. (2003). Spontaneous muscle twitches during sleep guide spinal self-organization. Nature, 424, 7275. https://doi.org/10.1038/nature01719 CrossRefGoogle ScholarPubMed
Pophale, A., Shimizu, K., Mano, T., Iglesias, T. L., Martin, K., Hiroi, M., Asada, K., Andaluz, P. G., Van Dinh, T. T., Meshulam, L., & Reiter, S. (2023). Wake-like skin patterning and neural activity during octopus sleep. Nature, 619, 129134. https://doi.org/10.1038/s41586-023-06203-4 CrossRefGoogle ScholarPubMed
Rattenborg, N.C., & Ungurean, G. (2023). The evolution and diversification of sleep. Trends in Ecology and Evolution, 38, 156170. https://doi.org/10.1016/j.tree.2022.10.004 CrossRefGoogle ScholarPubMed
Rößler, D. C., Kim, K., De Agrò, M., Jordan, A., Galizia, C. G., & Shamble, P. S. (2022). Regularly occurring bouts of retinal movements suggest an REM sleep-like state in jumping spiders. Proceedings of the National Academy of Sciences of the United States of America, 119, e2204754119. https://doi.org/10.1073/pnas.2204754119 CrossRefGoogle Scholar
Senzai, Y., & Scanziani, M. (2022). A cognitive process occurring during sleep is revealed by rapid eye movements. Science, 377, 9991004. https://doi.org/10.1126/science.abp8852 CrossRefGoogle ScholarPubMed
Shein-Idelson, M., Ondracek, J. M., Liaw, H. P., Reiter, S., & Laurent, G. (2016). Slow waves, sharp waves, ripples, and REM in sleeping dragons. Science, 352, 590595. https://doi.org/10.1126/science.aaf3621 CrossRefGoogle ScholarPubMed
Thakkar, M. M., & Datta, S. (2010). The evolution of REM sleep. In McNamara, P., Barton, R. A., & Nunn, C. L. (Eds.), Evolution of sleep (pp. 197217). Cambridge University Press.Google Scholar