Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T17:46:16.100Z Has data issue: false hasContentIssue false

Biological sex, by-products, and other continuous variables

Published online by Cambridge University Press:  25 July 2022

John G. Neuhoff*
Affiliation:
Department of Psychology, The College of Wooster, Wooster, OH 44001, USA jneuhoff@wooster.eduhttp://jneuhoff.com

Abstract

Sex/gender is a continuous variable that researchers frequently treat as dichotomous. This practice can mask continuous underlying adaptive traits and yield spurious dichotomous “sex differences.” As such, many sex differences in self-protection may be evolutionary by-products of underlying adaptations rather than adaptations themselves. Binary analysis of continuous sex/gender is ill-considered science that can contribute to inequality and counterproductive public policy.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amiaz, R., & Seidman, S. N. (2008). Testosterone and depression in men. Current Opinion in Endocrinology Diabetes and Obesity, 15(3), 278283. doi: 10.1097/MED.0b013e3282fc27ebCrossRefGoogle ScholarPubMed
Boerner, K. E., Birnie, K. A., Caes, L., Schinkel, M., & Chambers, C. T. (2014). Sex differences in experimental pain among healthy children: A systematic review and meta-analysis. Pain, 155(5), 983993. doi: 10.1016/j.pain.2014.01.031CrossRefGoogle ScholarPubMed
Browne, K. R. (1999). The relevance of sex differences in risk-taking to the military and the workplace. Behavioral and Brain Sciences, 22(2), 218. doi: 10.1017/s0140525x99271816CrossRefGoogle Scholar
Cameron, J. J., & Stinson, D. A. (2019). Gender (mis)measurement: Guidelines for respecting gender diversity in psychological research. Social and Personality Psychology Compass, 13(11), 114. doi: 10.1111/spc3.12506.CrossRefGoogle Scholar
Campbell, A. (1999). Staying alive: Evolution, culture, and women's intrasexual aggression. Behavioral and Brain Sciences, 22(2), 203. doi: 10.1017/s0140525x99001818CrossRefGoogle ScholarPubMed
Craft, R. M. (2007). Modulation of pain by estrogens. Pain, 132, S3S12. doi: 10.1016/j.pain.2007.09.028CrossRefGoogle ScholarPubMed
Dirlikov, B., Lavoie, S., & Shem, K. (2019). Correlation between thyroid function, testosterone levels, and depressive symptoms in females with spinal cord injury. Spinal Cord Series and Cases, 5(1), 17. doi: 10.1038/s41394-019-0203-y.CrossRefGoogle ScholarPubMed
Dubick, M. N., Ravin, T. H., Michel, Y., & Morrisette, D. C. (2015). Use of localized human growth hormone and testosterone injections in addition to manual therapy and exercise for lower back pain: A case series with 12-month follow-up. Journal of Pain Research, 8, 295302. doi: 10.2147/jpr.s81078CrossRefGoogle ScholarPubMed
Flake, N. M., Hermanstyne, T. O., & Gold, M. S. (2006). Testosterone and estrogen have opposing actions on inflammation-induced plasma extravasation in the rat temporomandibular joint. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 291(2), R343R348. doi: 10.1152/ajpregu.00835.2005CrossRefGoogle ScholarPubMed
Glover, E. M., Mercer, K. B., Norrholm, S. D., Davis, M., Duncan, E., Bradley, B., … Jovanovic, T. (2013). Inhibition of fear is differentially associated with cycling estrogen levels in women. Journal of Psychiatry & Neuroscience, 38(5), 341348. doi: 10.1503/jpn.120129CrossRefGoogle ScholarPubMed
Hermans, E. J., Putman, P., Baas, J. M., Koppeschaar, H. P., & van Honk, J. (2006). A single administration of testosterone reduces fear-potentiated startle in humans. Biological Psychiatry, 59(9), 872874. doi: 10.1016/j.biopsych.2005.11.015CrossRefGoogle ScholarPubMed
Hess, U., Adams, R. B., & Kleck, R. E. (2005). Who may frown and who should smile? Dominance, affiliation, and the display of happiness and anger. Cognition & Emotion, 19(4), 515536. doi: 10.1080/02699930441000364CrossRefGoogle Scholar
Ivkovic, N., Racic, M., Lecic, R., Bozovic, D., & Kulic, M. (2018). Relationship between symptoms of temporomandibular disorders and estrogen levels in women with different menstrual status. Journal of Oral & Facial Pain and Headache, 32(2), 151158. doi: 10.11607/ofph.1906CrossRefGoogle ScholarPubMed
Ji, Y., Tang, B., & Traub, R. J. (2008). The visceromotor response to colorectal distention fluctuates with the estrous cycle in rats. Neuroscience, 154(4), 15621567. doi: 10.1016/j.neuroscience.2008.04.070CrossRefGoogle ScholarPubMed
Ji, Y. P., Hu, B., Li, J. Y., & Traub, R. J. (2018). Opposing roles of estradiol and testosterone on stress-induced visceral hypersensitivity in rats. Journal of Pain, 19(7), 764776. doi: 10.1016/j.jpain.2018.02.007CrossRefGoogle ScholarPubMed
Kato, Y., Shigehara, K., Kawaguchi, S., Izumi, K., Kadono, Y., & Mizokami, A. (2020). Efficacy of testosterone replacement therapy on pain in hypogonadal men with chronic pain syndrome: A subanalysis of a prospective randomised controlled study in Japan (EARTH study). Andrologia, 52(9), 17. doi: 10.1111/and.13768.CrossRefGoogle Scholar
Ketelaar, T., Koenig, B. L., Gambacorta, D., Dolgov, I., Hor, D., Zarzosa, J., … Wells, L. (2012). Smiles as signals of lower status in football players and fashion models: Evidence that smiles are associated with lower dominance and lower prestige. Evolutionary Psychology, 10(3), 371397.CrossRefGoogle ScholarPubMed
Kraus, M. W., & Chen, T. W. D. (2013). A winning smile? Smile intensity, physical dominance, and fighter performance. Emotion (Washington, D.C.), 13(2), 270279. doi: 10.1037/a0030745CrossRefGoogle ScholarPubMed
Lesnak, J. B., Inoue, S., Lima, L., Rasmussen, L., & Sluka, K. A. (2020). Testosterone protects against the development of widespread muscle pain in mice. Pain, 161(12), 28982908. doi: 10.1097/j.pain.0000000000001985CrossRefGoogle ScholarPubMed
Li, L., Fan, X. T., Warner, M., Xu, X. J., Gustafsson, J. A., & Wiesenfeld-Hallin, Z. (2009). Ablation of estrogen receptor alpha or beta eliminates sex differences in mechanical pain threshold in normal and inflamed mice. Pain, 143(1–2), 3740. doi: 10.1016/j.pain.2009.01.005CrossRefGoogle ScholarPubMed
MacCallum, R. C., Zhang, S. B., Preacher, K. J., & Rucker, D. D. (2002). On the practice of dichotomization of quantitative variables. Psychological Methods, 7(1), 1940. doi: 10.1037//1082-989x.7.1.19CrossRefGoogle ScholarPubMed
Maeng, L. Y., & Milad, M. R. (2015). Sex differences in anxiety disorders: Interactions between fear, stress, and gonadal hormones. Hormones and Behavior, 76, 106117. doi: 10.1016/j.yhbeh.2015.04.002CrossRefGoogle ScholarPubMed
Neuhoff, J. G. (1998). Perceptual bias for rising tones. Nature, 395(6698), 123124. doi: 10.1038/25862CrossRefGoogle ScholarPubMed
Neuhoff, J. G. (2001). An adaptive bias in the perception of looming auditory motion. Ecological Psychology, 13, 87110.CrossRefGoogle Scholar
Neuhoff, J. G. (2016). Looming sounds are perceived as faster than receding sounds. Cognitive Research: Principles and Implications, 1, 19. doi: 10.1186/s41235-016-0017-4.Google ScholarPubMed
Neuhoff, J. G., Hamilton, G. R., Gittleson, A. L., & Mejia, A. (2014). Babies in traffic: Infant vocalizations and listener sex modulate auditory motion perception. Journal of Experimental Psychology: Human Perception and Performance, 40(2), 775783. doi: 10.1037/a0035071Google ScholarPubMed
Neuhoff, J. G., Long, K. L., & Worthington, R. C. (2012). Strength and physical fitness predict the perception of looming sounds. Evolution and Human Behavior, 33(4), 318322. doi: 10.1016/j.evolhumbehav.2011.11.001.CrossRefGoogle Scholar
Neuhoff, J. G., Planisek, R., & Seifritz, E. (2009). Adaptive sex differences in auditory motion perception: Looming sounds are special. Journal of Experimental Psychology: Human Perception and Performance, 35(1), 225234. doi: 10.1037/a0013159Google ScholarPubMed
Rehbein, E., Kogler, L., Hornung, J., Morawetz, C., Bayer, J., Krylova, M., … Derntl, B. (2021). Estradiol administration modulates neural emotion regulation. Psychoneuroendocrinology, 134, 110. doi: 10.1016/j.psyneuen.2021.105425.CrossRefGoogle ScholarPubMed
Rosen, S., Ham, B., & Mogil, J. S. (2017). Sex differences in neuroimmunity and pain. Journal of Neuroscience Research, 95(1–2), 500508. doi: 10.1002/jnr.23831CrossRefGoogle ScholarPubMed
Ruggieri, A., Anticoli, S., D'Ambrosio, A., Giordani, L., & Viora, M. (2016). The influence of sex and gender on immunity, infection and vaccination. Annali dell'Istituto Superiore di Sanità, 52(2), 198204. doi: 10.4415/ANN_16_02_11Google ScholarPubMed
Schertzinger, M., Wesson-Sides, K., Parkitny, L., & Younger, J. (2018). Daily fluctuations of progesterone and testosterone are associated with fibromyalgia pain severity. Journal of Pain, 19(4), 410417. doi: 10.1016/j.jpain.2017.11.013CrossRefGoogle ScholarPubMed
Schiff, W., & Oldak, R. (1990). Accuracy of judging time to arrival – Effects of modality, trajectory, and gender. Journal of Experimental Psychology: Human Perception and Performance, 16(2), 303316. doi: 10.1037/0096-1523.16.2.303.Google ScholarPubMed
White, H. D., Brown, L. A. J., Gyurik, R. J., Manganiello, P. D., Robinson, T. D., Hallock, L. S., … Yeo, K. T. J. (2015). Treatment of pain in fibromyalgia patients with testosterone gel: Pharmacokinetics and clinical response. International Immunopharmacology, 27(2), 249256. doi: 10.1016/j.intimp.2015.05.016CrossRefGoogle ScholarPubMed