Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T23:45:14.789Z Has data issue: false hasContentIssue false

Coexistence of general intelligence and specialized modules

Published online by Cambridge University Press:  15 August 2017

Federica Amici
Affiliation:
Institute of Biology, Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, 04103 Leipzig, Germany Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germanyamici@eva.mpg.dehttp://www.eva.mpg.de/pks/staff/amici/index.html Department of Psychology, University of Bern, 3012 Bern, Switzerland
Josep Call
Affiliation:
Department of Comparative and Developmental Psychology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germanycall@eva.mpg.dehttp://www.eva.mpg.de/psycho/staff/josep-call/index.html School of Psychology and Neuroscience, University of St Andrews, St Andrews Fife KY16 9JP, United Kingdom
Filippo Aureli
Affiliation:
Instituto de Neuroetologia, Universidad Veracruzana, 91190 Xalapa, Veracruz, Mexico Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool L3 3AF, United Kingdomf.aureli@ljmu.ac.ukhttps://www.ljmu.ac.uk/about-us/staff-profiles/faculty-of-science/natural-sciences-and-psychology/filippo-aureli

Abstract

Here, we specifically discuss why and to what extent we agree with Burkart et al. about the coexistence of general intelligence and modular cognitive adaptations, and why we believe that the distinction between primary and secondary modules they propose is indeed essential.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amici, F., Barney, B., Johnson, V. E., Call, J. & Aureli, F. (2012) A modular mind? A test using individual data from seven primate species. PLoS One 7(12):e51918.Google Scholar
Barton, R. A. & Harvey, P. H. (2000) Mosaic evolution of brain structure in mammals. Nature 405:1055–58.Google Scholar
Cosmides, L. & Tooby, J. (2002) Unraveling the enigma of human intelligence: Evolutionary psychology and the multimodular mind. In: The evolution of intelligence, ed. Sternberg, R. J. & Kaufman, J. C., pp. 145–98. Erlbaum.Google Scholar
de Waal, F. B. M. & Johanowicz, D. L. (1993) Modification of reconciliation behavior through social experience: An experiment with two macaque species. Child Development 64:897908.Google Scholar
de Winter, W. & Oxnard, C. E. (2001) Evolutionary radiations and convergences in the structural organization of mammalian brains. Nature 409:710–14.Google Scholar
Gardner, H. (1993) Multiple intelligences. Basic Books.Google Scholar
Herrmann, E. & Call, J. (2012) Are there geniuses among the apes? Philosophical Transactions of the Royal Society B 367:2753–61.Google Scholar
Herrmann, E., Call, J., Hernández-Lloreda, M. V., Hare, B. & Tomasello, M. (2007) Humans have evolved specialized skills of social cognition: The cultural intelligence hypothesis. Science 317:1360–66.Google Scholar
Herrmann, E., Hernandez-Lloreda, M. V., Call, J., Hare, B. & Tomasello, M. (2010b) The structure of individual differences in the cognitive abilities of children and chimpanzees. Psychological Science 21(1):102–10.Google Scholar
Jensen, A. R. (1993) Why is reaction time correlated with psychometric g? Current Directions in Psychological Science 2:5356.Google Scholar
Kaufman, A. S. (1979) Intelligent testing with the WISC-R. Wiley.Google Scholar
Kaufman, A. S. (2009) IQ testing 101. Springer.Google Scholar
Kolata, S., Light, K. & Matzel, L. D. (2008) Domain-specific and domain-general learning factors are expressed in genetically heterogeneous CD-1 mice. Intelligence 36(6):619–29.CrossRefGoogle ScholarPubMed
Lee, J. (2007) A g beyond Homo sapiens? Some hints and suggestions. Intelligence 35:253–65.Google Scholar
Lefebvre, L., Reader, S. M. & Sol, D. (2013) Innovating innovation rate and its relationship with brains, ecology and general intelligence. Brain, Behavior and Evolution 81:143–45.Google Scholar
Pennington, B. F., Filipek, P. A., Lefly, D., Chhabildas, N., Kennedy, D. N., Simon, J. H., Filley, C. M., Galaburda, A. & DeFries, J. C. (2000) A twin MRI study of size variations in the human brain. Journal of Cognitive Neuroscience 12:223–32.Google Scholar
Schmitt, V., Pankau, B. & Fischer, J. (2012) Old world monkeys compare to apes in the primate cognition test battery. PLoS One 7(4):e32024.Google Scholar
Shettleworth, S. J. (2010b) Cognition, evolution, and behavior. Oxford University Press.Google Scholar
Sol, D. (2009a) Revisiting the cognitive buffer hypothesis for the evolution of large brains. Biology Letters 5:130–33.CrossRefGoogle ScholarPubMed
Spearman, C. (1927) The abilities of man. Macmillan.Google Scholar
Sternberg, R. J. (1988) The triarchic mind: A new theory of human intelligence. Viking.Google Scholar
van Schaik, C. P. & Burkart, J. M. (2011) Social learning and evolution: The cultural intelligence hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences 366(1567):1008–16.CrossRefGoogle ScholarPubMed
van Schaik, C. P., Isler, K. & Burkart, J. M. (2012) Explaining brain size variation: From social to cultural brain. Trends in Cognitive Sciences 16:277–84.Google Scholar