BackgroundAlthough the Department of Veterans Affairs (VA) has made important suicide prevention advances, efforts primarily target high-risk patients with documented suicide risk, such as suicidal ideation, prior suicide attempts, and recent psychiatric hospitalization. Approximately 90% of VA patients that go on to die by suicide do not meet these high-risk criteria and therefore do not receive targeted suicide prevention services. In this study, we used national VA data to focus on patients that were not classified as high-risk, but died by suicide.
MethodsOur sample included all VA patients who died by suicide in 2017 or 2018. We determined whether patients were classified as high-risk using the VA's machine learning risk prediction algorithm. After excluding these patients, we used principal component analysis to identify moderate-risk and low-risk patients and investigated demographics, service-usage, diagnoses, and social determinants of health differences across high-, moderate-, and low-risk subgroups.
ResultsHigh-risk (n = 452) patients tended to be younger, White, unmarried, homeless, and have more mental health diagnoses compared to moderate- (n = 2149) and low-risk (n = 2209) patients. Moderate- and low-risk patients tended to be older, married, Black, and Native American or Pacific Islander, and have more physical health diagnoses compared to high-risk patients. Low-risk patients had more missing data than higher-risk patients.
ConclusionsStudy expands epidemiological understanding about non-high-risk suicide decedents, historically understudied and underserved populations. Findings raise concerns about reliance on machine learning risk prediction models that may be biased by relative underrepresentation of racial/ethnic minorities within health system.