Hostname: page-component-54dcc4c588-ff9ft Total loading time: 0 Render date: 2025-10-01T13:48:35.445Z Has data issue: false hasContentIssue false

Generalized Airy operators

Published online by Cambridge University Press:  01 August 2025

Antonio Arnal*
Affiliation:
Mathematical Sciences Research Centre, Queen’s University Belfast, University Road, Belfast BT7 1NN, UK (aarnalperez01@qub.ac.uk) Institute of Applied Mathematics, Graz University of Technology, Steyrergasse 30, Graz, Austria (siegl@tugraz.at)
Petr Siegl
Affiliation:
Institute of Applied Mathematics, Graz University of Technology, Steyrergasse 30, Graz, Austria (siegl@tugraz.at)
*
*Corresponding author.

Abstract

We study the behaviour of the norm of the resolvent for non-self-adjoint operators of the form $A := -\partial_x + W(x)$, with $W(x) \ge 0$, defined in ${L^2}({\mathbb{R}})$. We provide a sharp estimate for the norm of its resolvent operator, $\| (A - \lambda)^{-1} \|$, as the spectral parameter diverges $(\lambda \to +\infty)$. Furthermore, we describe the C0-semigroup generated by −A and determine its norm. Finally, we discuss the applications of the results to the asymptotic description of pseudospectra of Schrödinger and damped wave operators, and also the optimality of abstract resolvent bounds based on Carleman-type estimates.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Almog, Y.. The stability of the normal state of superconductors in the presence of electric currents. SIAM J. Math. Anal. 40 (2008), 824850.CrossRefGoogle Scholar
Almog, Y. and Helffer, B.. On the spectrum of non-selfadjoint Schrödinger operators with compact resolvent. Comm. Partial Differential Equations. 40 (2015), 14411466.10.1080/03605302.2015.1025978CrossRefGoogle Scholar
Almog, Y., Helffer, B. and Pan, X. -B.. Superconductivity near the normal state under the action of electric currents and induced magnetic fields in ${\mathbb{R}^2}$. Comm. Math. Phys. 300 (2010), 147184.10.1007/s00220-010-1111-yCrossRefGoogle Scholar
Arnal, A.. Resolvent estimates for the one-dimensional damped wave equation with unbounded damping. (2022), ArXiv Preprint arXiv:2206.08820.Google Scholar
Arnal, A.. Resolvent estimates for non-self-adjoint differential operators in one dimension. PhD thesis, Queen’s University Belfast, (2023).Google Scholar
Arnal, A. and Siegl, P.. Resolvent estimates for one-dimensional Schrödinger operators with complex potentials. (2022), arXiv:2203.15938v2.10.1016/j.jfa.2023.109856CrossRefGoogle Scholar
Arnal, A. and Siegl, P.. Resolvent estimates for one-dimensional Schrödinger operators with complex potentials. J. Funct. Anal. 284 (2023), 109856.10.1016/j.jfa.2023.109856CrossRefGoogle Scholar
Bögli, S., Siegl, P. and Tretter, C.. Approximations of spectra of Schrödinger operators with complex potential on $\mathbb{R}^d$. Comm. Partial Differential Equations. 42 (2017), 10011041.10.1080/03605302.2017.1330342CrossRefGoogle Scholar
Bandtlow, O. F.. Estimates for norms of resolvents and an application to the perturbation of spectra. Math. Nachr. 267 (2004), 311.10.1002/mana.200310149CrossRefGoogle Scholar
Bandtlow, O. F.. Resolvent estimates for operators belonging to exponential classes. Integral Equations Operator Theory. 61 (2008), 2143.10.1007/s00020-008-1571-zCrossRefGoogle Scholar
Bandtlow, O. F. and Güven, A.. Explicit upper bounds for the spectral distance of two trace class operators. Linear Algebra Appl. 466 (2015), 329342.10.1016/j.laa.2014.10.008CrossRefGoogle Scholar
Beauchard, K., Helffer, B., Henry, R. and Robbiano, L.. Degenerate parabolic operators of Kolmogorov type with a geometric control condition. ESAIM Control Optim. Calc. Var. 21 (2015), 487512.10.1051/cocv/2014035CrossRefGoogle Scholar
Bordeaux Montrieux, W.. Estimation de résolvante et construction de quasimode près du bord du pseudospectre. (2013), arXiv:1301.3102.Google Scholar
Davies, E. B.. Linear Operators and Their spectra. (Cambridge University Press, Cambridge, 2007).10.1017/CBO9780511618864CrossRefGoogle Scholar
Davies, E. B.. Pseudo-spectra, the harmonic oscillator and complex resonances. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999), 585599.10.1098/rspa.1999.0325CrossRefGoogle Scholar
Dencker, N., Sjöstrand, J. and Zworski, M.. Pseudospectra of semiclassical (pseudo-) differential operators. Commun. Pure Appl. Math. 57 (2004), 384415.10.1002/cpa.20004CrossRefGoogle Scholar
Dijkstra, D.. A continued fraction expansion for a generalization of Dawson’s integral. Mathematics of Computation. 31 (1977), 503510.Google Scholar
Dorey, P., Dunning, C. and Tateo, R.. Spectral equivalences, Bethe ansatz equations, and reality properties in $\mathcal{PT}$-symmetric quantum mechanics. J. Phys. A: Math. Gen. 34 (2001), 5679.10.1088/0305-4470/34/28/305CrossRefGoogle Scholar
Edmunds, D. E. and Evans, W. D.. Spectral Theory and Differential Operators. (Oxford University Press, New York, 1987).Google Scholar
Engel, K. -J. and Nagel, R.. One-Parameter Semigroups for Linear Evolution Equations. (Springer-Verlag, New York, 2000).Google Scholar
Freitas, P., Siegl, P. and Tretter, C.. Damped wave equation with unbounded damping. J. Differential Equations. 264 (2018), 70237054.10.1016/j.jde.2018.02.010CrossRefGoogle Scholar
Gohberg, C.I and Krein, M. G.. Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space. (AMS, Providence, 1969).CrossRefGoogle Scholar
Grebenkov, D. S.. Diffusion MRI/NMR at high gradients: Challenges and perspectives. Micro. Meso. Mater. 269 (2018), 7982.CrossRefGoogle Scholar
Grebenkov, D. S. and Helffer, B.. On spectral properties of the Bloch–Torrey operator in two dimensions. SIAM J. Math. Anal. 50 (2018), 622676.10.1137/16M1088387CrossRefGoogle Scholar
Grebenkov, D. S., Helffer, B. and Henry, R.. The complex Airy operator on the line with a semipermeable barrier. SIAM J. Math. Anal. 49 (2017), 18441894.10.1137/16M1067408CrossRefGoogle Scholar
Halmos, P. R. and Sunder, V. S.. Bounded Integral Operators on L2 Spaces. (Springer-Verlag, Berlin, 1978).10.1007/978-3-642-67016-9CrossRefGoogle Scholar
Helffer, B.. Spectral Theory and Its Applications. (Cambridge University Press, Cambridge, 2013).10.1017/CBO9781139505727CrossRefGoogle Scholar
Helffer, B.. Spectral theory for the complex Airy operator: the case of a semipermeable barrier and applications to the Bloch–Torrey equation. Talk at NYU Shanghai, (2016), (Accessed: 5 oct. 2016).Google Scholar
Henry, R.. Spectral instability of some non-selfadjoint anharmonic oscillators. C. R. Math. Acad. Sci. Paris. 350 (2012), 10431046.CrossRefGoogle Scholar
Herbst, W.I. Dilation analyticity in constant electric field. I. The two body problem. Comm. Math. Phys. 64 (1979), 279298.CrossRefGoogle Scholar
Kato, T.. Perturbation Theory for Linear Operators. (Springer-Verlag, Berlin, 1995).10.1007/978-3-642-66282-9CrossRefGoogle Scholar
Krejčiřík, D.. Complex magnetic fields: an improved Hardy-Laptev-Weidl inequality and quasi-self-adjointness. SIAM J. Math. Anal. 51 (2019), 790807.10.1137/18M1171254CrossRefGoogle Scholar
Krejčiřík, D. and Siegl, P.. Pseudomodes for Schrödinger operators with complex potentials. J. Funct. Anal. 276 (2019), 28562900.10.1016/j.jfa.2018.10.004CrossRefGoogle Scholar
Krejčiřík, D., Siegl, P., Tater, M. and Viola, J.. Pseudospectra in non-Hermitian quantum mechanics. J. Math. Phys. 56 (2015), 103513.10.1063/1.4934378CrossRefGoogle Scholar
Martinet, J.. Sur les propriétés spectrales d’opérateurs non-autoadjoints provenant de la mécanique des fluides. Thèse de doctorat, Faculté des Sciences d’Orsay. Université Paris-Sud 11. (2009).Google Scholar
Mityagin, B., Siegl, P., and Viola, J.. Concentration of eigenfunctions of Schrödinger operators. J. Fourier Anal. Appl. 28 (2022) 67.10.1007/s00041-022-09961-3CrossRefGoogle Scholar
Olver, F. W. J., Olde Daalhuis, A. B., Lozier, D. W., Schneider, B. I. Boisvert, R. F, Clark, C. W., Miller, B. R. Saunders, B. V., (Eds.) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.17 of 2017-12-22, 2010.Google Scholar
Peller, V. V.. Hankel Operators and Their Applications. Vol. 15, (Springer, Berlin, 2003)10.1007/978-0-387-21681-2CrossRefGoogle Scholar
Reed, M. and Simon, B.. Methods of Modern Mathematical Physics, Vol. 2: Fourier Analysis, Self-Adjointness. (Academic Press, Cambridge, 1975).Google Scholar
Rubinstein, J., Sternberg, P. and Zumbrun, K.. The resistive state in a superconducting wire: bifurcation from the normal state. Arch. Rat. Mech. Anal. 195 (2010), 117158.10.1007/s00205-008-0188-3CrossRefGoogle Scholar
Sarıhan, A. G. and Bandtlow, O. F.. Quantitative spectral perturbation theory for compact operators on a Hilbert space. Linear Algebra Appl. 610 (2021), 169202.10.1016/j.laa.2020.08.033CrossRefGoogle Scholar
Savchuk, A. M. and Shkalikov, A. A.. Spectral properties of the complex Airy operator on the half-line. Funktsional. Anal. i Prilozhen. 51 (2017), 8298.10.4213/faa3264CrossRefGoogle Scholar
Semorádová, I, and Siegl, P.. Diverging eigenvalues in domain truncations of Schrödinger operators with complex potentials. SIAM J. Math. Anal. 54 (4) (2022), 50645101.10.1137/21M1439699CrossRefGoogle Scholar
Shin, K. C.. On the reality of the eigenvalues for a class of $\mathcal{PT}$-symmetric oscillators. Comm. Math. Phys. 229 (2002), 543564.10.1007/s00220-002-0706-3CrossRefGoogle Scholar
Shkalikov, A. A.. Spectral portraits of the Orr-Sommerfeld operator with large Reynolds numbers. J. Math. Sci. 124 (2004), 54175441.10.1023/B:JOTH.0000047362.09147.c7CrossRefGoogle Scholar
Tao, T. Lecture notes MATH 247A: Fourier analysis, 2017. Available at: www.math.ucla.edu/tao/247a.1.06f/.Google Scholar
Titchmarsh, E. C.. The Theory of Functions. (Oxford University Press, Oxford, 1939).Google Scholar
Titchmarsh, E. C.. On the asymptotic distribution of eigenvalues. Q. J. Math. 5 (1954), 228240.CrossRefGoogle Scholar
Titchmarsh, E. C.. Eigenfunction Expansions Associated With Second-Order Differential Equations. Part I. (Clarendon Press, Oxford, 1962).10.1063/1.3058324CrossRefGoogle Scholar
Tumanov, S. N. and Shkalikov, A. A.. Eigenvalue dynamics of a PT-symmetric Sturm–Liouville operator and criteria for similarity to a self-adjoint or a normal operator. Dokl. Math. 96 (2017), 607611.CrossRefGoogle Scholar