Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T23:51:55.821Z Has data issue: false hasContentIssue false

The effect of nutrients on feed intake in ruminants

Published online by Cambridge University Press:  28 February 2007

P. Faverdin*
Affiliation:
INRA, Station de recherche sur la vache laitière, 35590 Saint-Gilles, France
*
Corresponding Author: Dr P. Faverdin, fax +33 299 285 101, email faverdin@st-gilles.rennes.inra.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of the present review is to examine the role played by nutrients in controlling feed intake in ruminants, in light of their particular anatomical, physiological, nutritional and behavioural characteristics. The ration is first digested in the rumen for several hours by microbial fermentation. Volatile fatty acids, which constitute 50–75 % of a ruminant’s energy supply, considerably depress feed intake when administered by short-term infusion into the rumen. However, this effect seems to be largely due to osmolarity problems. Only propionate seems to have a specific action, unrelated to osmolarity, in the mesenteric or portal veins. Nitrogenous nutrients have little short-term effect on feed intake, except when there is excess NH3 in the rumen. Metabolic cues from intestinal digestion, particularly of glucose and starch, have very little short-or long-term influence in controlling feed intake, in comparison with rumen digestion cues. However, the short-term responses in feeding behaviour do not always reflect longer-term effects on feed intake control. The effects of volatile fatty acid infusion on feed intake are much less significant over the long term, except in the case of propionate. The nutrients required for good microbial activity (proteins in the rumen) generally promote feed intake, whereas nutrients that disrupt rumen functioning (lipids) reduce feed intake. After a learning period, preferences are always governed by a tendency toward optimum rumen functioning, rather than by animal nutritional requirements, although the two factors are not independent. Ruminants, due to their particular anatomical and nutritional characteristics, have, in the course of their evolution, developed specific feed intake control mechanisms based on nutritional cues.Résumé L’objet de cette revue est d’étudier le rôle des nutriments dans les mécanismes de contrôle de la prise alimentaire chez les ruminants, en tenant compte de leurs particularités anatomiques, physiologiques, nutritionnelles et comportementales. La digestion de la ration se déroule d’abord pendant de nombreuses heures dans le rumen par fermentation des aliments par des microbes. Les acides gras volatils, qui constituent 50–75 % des nutriments énergétiques d’un ruminant, présentent des effets rassasiants marqués lorsqu’ils sont perfusés dans le rumen. Cependant, ces effets semblent liés dans une large mesure à des problèmes d’osmolarité. Seul le propionate semble agir avec une action spécifique autre que l’osmolarité au niveau des veines mésentériques ou porte. Les nutriments azotés ont peu d’effet à court terme sur la prise alimentaire, excepté en cas d’excès d’ammoniac du rumen. Les signaux métaboliques provenant de l’absorption intestinale, en particulier le glucose ou l’amidon, ont très peu d’effet, à court ou long terme, dans le contrôle de la prise d’aliment comparativement aux signaux provenant de la digestion ruminale. Mais les réponses observées à court terme dans le contrôle de la prise alimentaire ne présagent pas toujours des effets à plus long terme dans la régulation des quantités ingérées. Les effets des acides gras volatils sur les quantités ingérées sont beaucoup moins nets à long terme, sauf pour le propionate. Les nutriments indispensables au bon fonctionnement de l’activité microbienne (protéines dans le rumen) ont des effets favorables sur l’ingestion alors que les nutriments qui perturbent le fonctionnement du rumen (lipides) diminuent les quantités ingérées. Après apprentissage, les choix alimentaires s’orientent toujours vers une recherche d’un fonctionnement optimal du rumen plus que vers une bonne adéquation des apports aux besoins de l’animal, même si les deux ne sont pas indépendants. Les ruminants présentent donc, de par leurs spécificités anatomique et nutritionnelle, des adaptations originales dans les mécanismes de régulation des quantités ingérées à partir des signaux nutritionnels.

Type
Symposium on ‘Functionality of nutrients and behaviour’
Copyright
Copyright © The Nutrition Society 1999

References

Adams, GB & Forbes, JM (1981) Additivity of effects of ruminal acetate and either portal propionate or rumen distension on food intake in sheep. Proceedings of the Nutrition Society 40, 44A.Google Scholar
Anil, MH & Forbes, JM (1980) Feeding in sheep during intraportal infusions of short chain fatty acids and the effect of liver denervation. Journal of Physiology 298, 407414.CrossRefGoogle Scholar
Annexstad, RJ, Stern, MD, Otterby, DE, Linn, JG & Hansen, WP (1987) Extruded soybeans and corn gluten meal as supplemental protein sources for lactating dairy cattle. Journal of Dairy Science 70, 814822.CrossRefGoogle Scholar
Atwal, AS & Erfle, JD (1992) Effects of feeding fish meal to cows on digestibility, milk production, and milk composition. Journal of Dairy Science 75, 502507.CrossRefGoogle Scholar
Baile, CA & McLaughlin, CL (1970) Feed intake of goats during VFA injections into four gastric areas. Journal of Dairy Science 53, 10581063.CrossRefGoogle Scholar
Baile, CA & Mayer, J (1967) Intragastric injections of liquid diet, water and acetate and meal patterns of goats. American Journal of Physiology 213, 387392.CrossRefGoogle Scholar
Baile, CA & Mayer, J (1969) Depression of feed intake of goats by metabolites injected during meals. American Journal of Physiology 217, 18301836.CrossRefGoogle Scholar
Baker, MJ, Amos, HE, Nelson, A, Williams, CC & Froetschel, MA (1996) Undegraded intake protein: effects on milk production and amino acid utilization by cows fed wheat silage. Canadian Journal of Animal Science 76, 367376.CrossRefGoogle Scholar
Bareille, N & Faverdin, P (1996) Modulation of the feeding response of lactating dairy cows to peripheral insulin administration with or without a glucose supply. Reproduction Nutrition Development 36, 8393.CrossRefGoogle Scholar
Barry, TN (1976) Effects of intraperitoneal injections of DL-methionine on the voluntary intake and wool growth of sheep fed sole diets of hay, silage and pasture differing in digestibility. Journal of Agricultural Science, Cambridge 86, 141149.CrossRefGoogle Scholar
Barry, TN (1980) Responses to abomasal infusions of casein plus methionine in lactating ewes fed fresh pasture. New Zealand Journal of Agricultural Research 23, 427431.CrossRefGoogle Scholar
Baumont, R, Daveau, O & Perpère, C (1994) A trial to quantify the roles of ruminal and oropharyngeal signals in the control of food intake by cows. Proceedings of the Society for Nutritional Physiology 3, 122.Google Scholar
Bergen, WG (1972) Rumen osmolality as a factor in feed intake control of sheep. Journal of Animal Science 34, 10541060.CrossRefGoogle Scholar
Berthelot, V, Belzung, C, Meunier-Salaun, MC, Nowak, R & Picard, M (1996) Cholecystokinin A receptor antagonist inhibits feed memory in Japanese quail. Physiology and Behavior 60, 575579.CrossRefGoogle ScholarPubMed
Booth, DA (1992) Integration of internal and external signals in intake control. Proceedings of the Nutrition Society 51, 2128.CrossRefGoogle Scholar
Broderick, GA, Kowalczyk, T & Satter, LD (1970) Milk production response to supplementation with encapsuled methionine per os or casein per abomasum. Journal of Dairy Science 53, 17141721.CrossRefGoogle ScholarPubMed
Broderick, GA, Ricker, DB & Driver, LS (1990) Expeller soybean meal and corn by-products versus solvent soybean meal for lactating dairy cows fed alfalfa silage as sole forage. Journal of Dairy Science 73, 453462.CrossRefGoogle Scholar
Bryant, AM, Titchen, DA & Reid, CSW (1970) Some effects on food intake of infusions of amino acid-containing materials. Proceedings of the New Zealand Society for Animal Production 30, 227239.Google Scholar
Campling, RC & Balch, CC (1961) Factors affecting the voluntary intake of food by cows. 1. Preliminary observations of the effects, on the voluntary intake of hay, of changes in the amount of reticulo-ruminal contents. British Journal of Nutrition 15, 523530.CrossRefGoogle Scholar
Carter, RR & Grovum, WL (1990) A review of the physiological significance of hypertonic body fluids on feed intake and ruminal function: salivation, motility, and microbes. Journal of Animal Science 68, 28112832.CrossRefGoogle Scholar
Chilliard, Y, Doreau, M, Gagliostro, G & Elmeddah, Y (1993) Addition de lipides protégés (encapsulés ou savons de calcium) à la ration de vaches laitières. Effets sur les performances et la composition du lait (Protected (encapsulated or calcium salts) lipids in dairy cow diets. Effects on production and milk composition). INRA Productions Animales 6, 139150.CrossRefGoogle Scholar
Choung, JJ & Chamberlain, DG (1993 a) The effects of abomasal infusions of casein or soyabean-protein isolate on the milk production of dairy cows in mid-lactation. British Journal of Nutrition 69, 103115.CrossRefGoogle Scholar
Choung, JJ & Chamberlain, DG (1993 b) Effects of addition of lactic acid and post-ruminal supplementation with casein on the nutritional value of grass silage for milk production in dairy cows. Grass Forage Science 48, 380386.CrossRefGoogle Scholar
Clark, JH, Spires, HR, Derrig, RG & Bennink, MR (1977) Milk production, nitrogen utilization and glucose synthesis in lactating cows infused postruminally with sodium caseinate and glucose. Journal of Nutrition 107, 631644.CrossRefGoogle Scholar
Conrad, HR, Baile, CA & Mayer, J (1977) Changing meal patterns and suppression of feed intake with increasing amounts of dietary nonprotein nitrogen in ruminants. Journal of Dairy Science 60, 17251733.CrossRefGoogle Scholar
Cooper, SDB, Kyriazakis, I & Oldham, JD (1994) The effect of late pregnancy on the diet selections made by ewes. Livestock Production Science 40, 263275.CrossRefGoogle Scholar
Cowan, RT, Reid, GW, Greenhalgh, JFD & Tait, CAG (1981) Effects of feeding level in late pregnancy and dietary protein concentration during early lactation on food intake, milk yield, liveweight change and nitrogen balance of cows. Journal of Dairy Research 48, 201212.CrossRefGoogle Scholar
De Jong, A (1981) Regulation of food intake in the goat: circulating metabolites and hormones in relation to eating. PhD Thesis, University of Groningen.Google Scholar
Doreau, M & Chilliard, Y (1997) Effects of ruminal or postruminal fish oil supplementation on intake and digestion in dairy cows. Reproduction Nutrition Development 37, 113124.CrossRefGoogle Scholar
Dowden, DR & Jacobson, DR (1960) Inhibition of appetite in dairy cattle by certain intermediate metabolites. Nature 188, 148149.CrossRefGoogle Scholar
Dulphy, JP & Faverdin, P (1987) L’ingestion alimentaire chez les ruminants: modalités et phénomènes associés (Feed intake in ruminants: activities and related events). Reproduction Nutrition Development 27, 129155.CrossRefGoogle Scholar
Egan, AR (1965) Nutritional status and intake regulation in sheep. II. The influence of sustained duodenal infusions of casein or urea upon voluntary intake of low-protein roughages by sheep. Australian Journal of Agricultural Research 16, 451462.CrossRefGoogle Scholar
Engku Azahan, EA & Forbes, JM (1992) Effects of intraruminal infusions of sodium salts on selection of hay and concentrate foods by sheep. Appetite 18, 143154.CrossRefGoogle Scholar
Farningham, DAH, Mercer, JG & Lawrence, CB (1993) Satiety signals in sheep: involvement of CCK, propionate, and vagal CCK binding sites. Physiology and Behavior 54, 437442.CrossRefGoogle Scholar
Farningham, DAH & White, CC (1993) The role of propionate and acetate in the control of food intake in sheep. British Journal of Nutrition 70, 3746.CrossRefGoogle Scholar
Faverdin, P (1985) Régulation de l’ingestion des vaches laitières en début de lactation: variations au cours du nychtémère de l’activité alimentaire, des métabolites sanguins et de l’insulinémie et étude du rôle de l’insuline (Regulation of feed intake in early lactating dairy cows: daily pattern of feeding behaviour, blood metabolites and insulin; the role of insulin). PhD Thesis, Institut National Agronomique Paris Grignon.Google Scholar
Faverdin, P (1990) Effets d’infusion d’un mélange complet d’acides gras volatils en cours de repas sur la prise alimentaire de vaches taries ou en lactation (Effects of infusion of a complete mixture of volatile fatty acids during a meal on feed intake of dry and lactating cows). Reproduction Nutrition Development Suppl. 2, 213s214s.CrossRefGoogle Scholar
Faverdin, P, Bareille, N & Vérité, R (1999) Effect of timing of rumen energy supply on feed intake control in lactating dairy cows. Journal of Dairy Science (In the Press).CrossRefGoogle ScholarPubMed
Faverdin, P, Baumont, R & Ingvartsen, KL (1995) Control and prediction of feed intake in ruminants. In Recent Developments in the Nutrition of Herbivores. Proceedings of the Fourth International Symposium on the Nutrition of Herbivores, pp. 95120 [Journet, M, Grenet, E, Farce, MH, Theriez, M and Demarquilly, C, editors\. Paris: INRA Editions.Google Scholar
Faverdin, P, Delaby, L, Vérité, R & Marquis, B (1998) Effet de la teneur en protéines et en aliments concentrés d’une ration complète à base d’ensilage de maïs sur l’ingestion et la production laitière de vaches laitières en début de lactation (Effect of protein and concentrate content of a complete maize-silage-based diet on feed intake and milk production of dairy cows in early lactation). Rencontres Recherches Ruminants 5, 263.Google Scholar
Faverdin, P & Peyraud, JL (1994) Effects of kinetics of volatile fatty acids infusion into the rumen on feed intake in lactating cows. Proceedings of the Society for Nutritional Physiology 3, 126.Google Scholar
Faverdin, P, Richou, B & Peyraud, JL (1992) Effects of digestive infusions of volatile fatty acids or glucose on food intake in lactating or dry cows. Annales de Zootechnie 41, 93.CrossRefGoogle Scholar
Forbes, JM (1995) Voluntary Food Intake and Diet Selection in Farm Animals. Wallingford: CAB International.Google Scholar
Forbes, JM & Barrio, JP (1992) Abdominal chemo- and mechanosensitivity in ruminants and its role in the control of food intake. Experimental Physiology 77, 2750.CrossRefGoogle Scholar
Frobish, RA & Davis, CL (1976) Effects of abomasal infusion of glucose and propionate on milk yield and composition. Journal of Dairy Science 60, 204209.CrossRefGoogle Scholar
Gagliostro, G & Chilliard, Y (1991) Duodenal rapeseed oil infusion in early and midlactation cows. 4. In vivo and in vitro adipose tissue lipolytic responses. Journal of Dairy Science 74, 18301843.CrossRefGoogle ScholarPubMed
Grovum, WL (1995) Mechanisms explaining the effects of short chain fatty acids on feed intake in ruminants - osmotic pressure, insulin and glucagon. In Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction: Proceedings of the Eighth International Symposium on Ruminant Physiology, pp. 173197 [Engelhardt, WV, Leonhard-Marek, S, Breves, G and Giesecke, D, editors]. Stuttgart: Ferdinand Enke Verlag.Google Scholar
Grummer, RR, Slark, K, Bertics, SJ, Luck, ML & Barmore, JA (1996) Soybeans versus animal sources of rumen-undegradable protein and fat for early lactation dairy cows. Journal of Dairy Science 79, 18091816.CrossRefGoogle Scholar
Hagemeister, H, Precht, D & Barth, CA (1988) Zum Transfer von Omega-3-Fettsäuren in das Milchfett bei Kühen (Transfer of omega-3 fatty acids into milk fat in dairy cows). Milchwissenschaft 43, 153158.Google Scholar
Hikosaka, K, Sasaki, Y & Tsuda, T (1979) Effects of glucose, insulin and FFA on food intake in the sheep. Annales de Recherches Vétérinaires 10, 237239.Google Scholar
Holder, JM (1963) Chemostatic regulation of appetite in sheep. Nature 200, 10741075.CrossRefGoogle Scholar
Houpt, TR (1974) Stimulation of food intake in ruminants by 2-deoxy-D-glucose and insulin. American Journal of Physiology 227, 161167.CrossRefGoogle Scholar
Illius, AW & Jessop, NS (1996) Metabolic constraints on voluntary intake in ruminants. Journal of Animal Science 74, 30523062.CrossRefGoogle Scholar
Jarrige, R, Dulphy, JP, Faverdin, P, Baumont, R & Demarquilly, C (1995) Activités d’ingestion et de rumination (Eating and rumination). In Nutrition des Ruminants Domestiques - Ingestion et Digestion (The Nutrition of Domestic Ruminants - Intake and Digestion), pp. 123181 [Jarrige, R, Ruckebush, Y, Demarquilly, C, Farce, MH and Journet, M, editors]. Paris: INRA Editions.Google Scholar
Journet, M, Champredon, C, Pion, R & Vérité, R (1983) Physiological basis of the protein nutrition of high producing cows. Critical analysis of the allowances. Protein Metabolism and Nutrition. 4th International Symposium. European Association for Animal Production Publication no. 31, pp. 433448. Paris: INRA.Google Scholar
Kung, L Jr & Huber, JT (1983) Influence of nonprotein nitrogen and protein of low rumen degradability on nitrogen flow and utilization in lactating dairy cows. Journal of Dairy Science 66, 227234.CrossRefGoogle Scholar
Le Magnen, J (1985) Hunger. Cambridge: Cambridge University Press.Google Scholar
Leuvenink, HGD, Bleumer, EJB, Kruys, P & Bongers, LJGM (1995) Propionate induced effects on feed intake and blood parameters in sheep. Annales de Zootechnie 44, 244.CrossRefGoogle Scholar
Lundquist, RG, Otterby, DE & Linn, JG (1986) Influence of formaldehyde-treated soybean meal on milk production. Journal of Dairy Science 69, 13371345.CrossRefGoogle ScholarPubMed
Manning, R, Alexander, GI, Krueger, HM & Bogart, R (1959) The effect of intravenous glucose injections on appetite in adult ewes. American Journal of Veterinary Research 20, 242246.Google Scholar
Martin, FH & Baile, CA (1972) Feed intake of goats and sheep following acetate or propionate injections into rumen, ruminal pouches and abomasum as affected by local anesthetics. Journal of Dairy Science 55, 606613.CrossRefGoogle Scholar
Mbanya, JN, Anil, MH & Forbes, JM (1993) The voluntary intake of hay and silage by lactating cows in response to ruminal infusion of acetate or propionate, or both, with and without distension of the rumen with a balloon. British Journal of Nutrition 69, 713720.CrossRefGoogle ScholarPubMed
Michalet-Doreau, B, Martin, C & Doreau, M (1997) Optimisation de la digestion des parois végétales dans le rumen: quantification des ineractions digestives (Optimisation of fibre ruminal digestion: interactions of fibre digestion with other components). Rencontres Recherches Ruminants 4, 103112.Google Scholar
Mielke, CD & Schingoethe, DJ (1981) Heat-treated soybeans for lactating cows. Journal of Dairy Science 64, 15791585.CrossRefGoogle Scholar
Netemeyer, DT, Bush, LJ, Ward, JW & Jafri, SA (1982) Effect of heating soybean meal for dairy cows. Journal of Dairy Science 65, 235241.CrossRefGoogle Scholar
Nombekela, SW & Murphy, MR (1995) Sucrose supplementation and feed intake of dairy cows in early lactation. Journal of Dairy Science 78, 880885.CrossRefGoogle Scholar
Nombekela, SW, Murphy, MR, Gonyou, HW & Marden, JI (1994) Dietary preference in early lactation cows as affected by primary tastes and some common feed flavors. Journal of Dairy Science 77, 23932399.CrossRefGoogle ScholarPubMed
Provenza, FD (1995) Role of learning in food preferences of ruminants: Greenhalgh and Reid revisited. In Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction: Proceedings of the Eighth International Symposium on Ruminant Physiology, pp. 233247 [Engelhardt, WV, Leonhard-Marek, S, Breves, G and Giesecke, D, editors]. Stuttgart: Ferdinand Enke Verlag.Google Scholar
Provenza, FD, Ortega-Reyes, L, Scott, CB, Lynch, JJ & Burritt, EA (1994) Antiemetic drugs attenuate food aversions in sheep. Journal of Animal Science 72, 19891994.CrossRefGoogle Scholar
Quigley, JD & Heitmann, RN (1991) Effect of propionate and dietary energy on dry matter intake in sheep. Journal of Animal Science 69, 11781187.CrossRefGoogle Scholar
Ralphs, MH, Provenza, FD, Wiedmeier, RD & Bunderson, FB (1995) Effects of energy source and food flavor on conditioned preferences in sheep. Journal of Animal Science 73, 16511657.CrossRefGoogle Scholar
Robinson, PH & Kennelly, JJ (1988) Influence of intake of rumen undegradable protein on milk production of late lactation Holstein cows. Journal of Dairy Science 71, 21352142.CrossRefGoogle Scholar
Rogers, JA, Clark, JH, Drendel, TR & Fahey, GC (1984) Milk production and nitrogen utilization by dairy cows infused postruminally with sodium caseinate, soybean meal, or cottonseed meal. Journal of Dairy Science 67, 19281935.CrossRefGoogle Scholar
Rulquin, H & Vérité, R (1993) Amino acid nutrition of dairy cows: productive effects and animal requirements. In Recent Advances in Animal Nutrition, pp. 5577 [Garnsworthy, PC, editor]. Nottingham: Nottingham University Press.Google Scholar
Scott, TA, Combs, DK & Grummer, RR (1991) Effects of roasting, extrusion, and particle size on the feeding value of soybeans for dairy cows. Journal of Dairy Science 74, 25552562.CrossRefGoogle Scholar
Seymour, WM, Polan, CE & Herbein, JH (1990) Effects of dietary protein degradability and casein or amino acid infusions on production and plasma amino acids in dairy cows. Journal of Dairy Science 73, 735748.CrossRefGoogle ScholarPubMed
Simkins, KL, Suttle, JW & Baumgardt, BR (1965) Regulation of food intake in ruminants: 4. effect of acetate, propionate, butyrate and glucose on voluntary food intake in dairy cattle. Journal of Dairy Science 48, 16351642.CrossRefGoogle Scholar
Spain, JN, Alvarado, MD, Polan, CE, Miller, CN & McGilliard, ML (1990) Effect of protein source and energy on milk composition in midlactation dairy cows. Journal of Dairy Science 73, 445452.CrossRefGoogle Scholar
Spires, HR, Clark, JH, Derrig, RG & Davis, CL (1975) Milk production and nitrogen utilization in response to postruminal infusion of sodium caseinate in lactating cows. Journal of Nutrition 105, 11111121.CrossRefGoogle Scholar
Ternouth, JH & Beattie, AW (1971) Studies of the food intake of sheep at a single meal. British Journal of Nutrition 25, 153164.CrossRefGoogle Scholar
Tolkamp, BJ, Dewhurst, RJ, Friggens, NC, Kyriazakis, I, Veerkamp, RF & Oldham, JD (1998) Diet choice by dairy cows. 1. Selection for feed protein content during the first half of lactation. Journal of Dairy Science 81, 26572669.CrossRefGoogle Scholar
Tolkamp, BJ & Ketelaars, JJMH (1992) Toward a new theory of feed intake regulation in ruminants. 2. Costs and benefits of feed consumption: an optimization approach. Livestock Production Science 30, 297317.CrossRefGoogle Scholar
Van Os, M, Dulphy, JP & Baumont, R (1995) The effect of protein degradation products in grass silages on feed intake and intake behaviour in sheep. British Journal of Nutrition 73, 5164.Google ScholarPubMed
Vandermeerschen-Doize, F & Paquay, R (1984) Etude du Contrôle à Long Terme des Ingestions Volontaires chez le Ruminant (The Long Term Control of Voluntary Feed Intake in the Ruminant). Namur: IRSIA, Presses Universitaire de Namur.Google Scholar
Vérité, R & Journet, M (1975) Alimentation des vaches laitières avec de l’ensilage de maïs: Influence de la nature de l’ensilage, de la suralimentation énergétique et de la nature de la complémentation azotée. I.-Production laitière (Feeding of dairy cows maize silage: effects of the type of silage, level of energy and nature of nitrogen supplement. I.-Milk production). Annales de Zootechnie 24, 95107.CrossRefGoogle Scholar
Vérité, R & Journet, M (1977) Utilisation des tourteaux traités au formol par les vaches laitières. II.- Effets sur la production laitière du traitement des tourteaux au formol et du niveau d’apport azoté au début de la lactation (Utilization of formaldehyde-treated oil meals by dairy cows. II. Milk production as affected by oil-meal treatment and protein supply during early lactation). Annales de Zootechnie 26, 183205.CrossRefGoogle Scholar
Vik-Mo, L, Emery, RS & Huber, JT (1974) Milk protein production in cows abomasally infused with casein or glucose. Journal of Dairy Science 57, 869877.CrossRefGoogle ScholarPubMed
Villalba, JJ & Provenza, FD (1996) Preference for flavored wheat straw by lambs conditioned with intraruminal administrations of sodium propionate. Journal of Animal Science 74, 23622368.CrossRefGoogle Scholar
Villalba, JJ & Provenza, FD (1997) Preference for flavoured foods by lambs conditioned with intraruminal administration of nitrogen. British Journal of Nutrition 78, 545561.CrossRefGoogle Scholar
Vinci, JL, Clark, JH, Hurley, WL & Bahr, JM (1988) Effects of abomasal or intravenous administration of arginine on milk production, milk composition, and concentrations of somatotropin and insulin in plasma of dairy cows. Journal of Dairy Science 71, 658665.Google Scholar
Xu, S, Harrison, JH, Chalupa, W, Sniffen, C, Julien, W, Sato, H, Fujieda, T, Watanabe, K, Ueda, T & Suzuki, H (1998) The effect of ruminal bypass lysine and methionine on milk yield and composition of lactating cows. Journal of Dairy Science 81, 10621077.CrossRefGoogle ScholarPubMed
Yang, CMJ, Schingoethe, DJ & Casper, DP (1986) Protected methionine and heat-treated soybean meal for high producing dairy cows. Journal of Dairy Science 69, 23482357.CrossRefGoogle Scholar