Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T07:10:16.885Z Has data issue: false hasContentIssue false

The systematically varying stellar IMF

Published online by Cambridge University Press:  11 March 2020

Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Some ultra-compact dwarf galaxies have large dynamical mass to light (M / L) ratios and also appear to contain an overabundance of LMXB sources, and some Milky Way globular clusters have a low concentration and appear to have a deficit of low-mass stars. These observations can be explained if the stellar IMF becomes increasingly top-heavy with decreasing metallicity and increasing gas density of the forming object. The thus constrained stellar IMF then accounts for the observed trend of metallicity and M / L ratio found amongst M31 globular star clusters. It also accounts for the overall shift of the observationally deduced galaxy-wide IMF from top-light to top-heavy with increasing star formation rate amongst galaxies. If the IMF varies similarly to deduced here, then extremely young very massive star-burst clusters observed at a high redshift would appear quasar-like (Jerabkova et al. 2017).

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Adams, F. C. & Fatuzzo, M. 1996, ApJ, 464, 256CrossRefGoogle Scholar
Adams, F. C. & Laughlin, G. 1996, ApJ, 468, 586CrossRefGoogle Scholar
André, P., Men’shchikov, A., Bontemps, S., et al. 2010, A&A, 518, L102Google Scholar
Banerjee, S. & Kroupa, P. 2012, A&A, 547, A23Google Scholar
Bartko, H., Martins, F., Trippe, S., et al. 2010, ApJ, 708, 834CrossRefGoogle Scholar
Bastian, N., Covey, K. R., & Meyer, M. R. 2010, ARAA, 48, 339CrossRefGoogle Scholar
Dabringhausen, J., Kroupa, P., & Baumgardt, H. 2009, MNRAS, 394, 1529CrossRefGoogle Scholar
Dabringhausen, J., Fellhauer, M., & Kroupa, P. 2010, MNRAS, 403, 1054CrossRefGoogle Scholar
Dabringhausen, J., Kroupa, P., Pflamm-Altenburg, J., et al. 2012, ApJ, 747, 72CrossRefGoogle Scholar
Davé, R. 2008, MNRAS, 385, 147CrossRefGoogle Scholar
De Marchi, G., Paresce, F., & Pulone, L. 2007, ApJL, 656, L65CrossRefGoogle Scholar
De Marchi, G., Panagia, N., & Beccari, G. 2017, ApJ, 846, 110CrossRefGoogle Scholar
Dib, S., Kim, J., & Shadmehri, M. 2007, MNRAS, 381, L40CrossRefGoogle Scholar
Elmegreen, B. G. & Scalo, J. 2006, ApJ, 636, 149CrossRefGoogle Scholar
Goodwin, S. P. & Kroupa, P. 2005, A&A, 439, 565Google Scholar
Gunawardhana, M. L. P., Hopkins, A. M., Sharp, R. G., et al. 2011, MNRAS, 415, 1647CrossRefGoogle Scholar
Haghi, H., Khalaj, P., Hasani Zonoozi, A., et al. 2017, ApJ, 839, 60CrossRefGoogle Scholar
Hilker, M., Infante, L., Vieira, G., et al. 1999, A&AS, 134, 75Google Scholar
Hopkins, A. M. 2018, PASA, 35, 39CrossRefGoogle Scholar
Hoversten, E. A. & Glazebrook, K. 2008, ApJ, 675, 163CrossRefGoogle Scholar
Jerabkova, T., Kroupa, P., Dabringhausen, J., et al. 2017, A&A, 608, A53Google Scholar
Jerabkova, T., Hasani Zonoozi, A., Kroupa, P., et al. 2018, A&A, 620, A39Google Scholar
Kalari, V. M., Carraro, G., Evans, C. J., et al. 2018, ApJ, 857, 132CrossRefGoogle Scholar
Kirk, H. & Myers, P. C. 2011, ApJ, 727, 64CrossRefGoogle Scholar
Kirk, H. & Myers, P. C. 2012, ApJ, 745, 131CrossRefGoogle Scholar
Kroupa, P., Tout, C. A., & Gilmore, G. 1990, MNRAS, 244, 76Google Scholar
Kroupa, P., Tout, C. A., & Gilmore, G. 1993, MNRAS, 262, 545CrossRefGoogle Scholar
Kroupa, P. & Tout, C. A. 1997, MNRAS, 287, 402CrossRefGoogle Scholar
Kroupa, P. 2002, Science, 295, 82CrossRefGoogle Scholar
Kroupa, P., Weidner, C., Pflamm-Altenburg, J., et al. 2013, Planets, Stars and Stellar Systems. Volume 5: Galactic Structure and Stellar Populations, 115CrossRefGoogle Scholar
Larson, R. B. 1998, MNRAS, 301, 569CrossRefGoogle Scholar
Lee, J. C., Gil de Paz, A., Tremonti, C., et al. 2009, ApJ, 706, 599CrossRefGoogle Scholar
Marks, M., Kroupa, P., Dabringhausen, J., et al. 2012, MNRAS, 422, 2246CrossRefGoogle Scholar
Matteucci, F. 1994, A&A, 288, 57Google Scholar
Meurer, G. R., Wong, O. I., Kim, J. H., et al. 2009, ApJ, 695, 765CrossRefGoogle Scholar
Mor, R., Robin, A. C., Figueras, F., et al. 2019, A&A, 624, L1Google Scholar
Offner, S. S. R., Clark, P. C., Hennebelle, P., et al. 2014, in Protostars and Planets VI, 53Google Scholar
Oh, S., Kroupa, P., & Pflamm-Altenburg, J. 2015, ApJ, 805, 92CrossRefGoogle Scholar
Oh, S. & Kroupa, P. 2016, A&A, 590, A107Google ScholarPubMed
Oh, S. & Kroupa, P. 2018, MNRAS, 481, 153CrossRefGoogle Scholar
Papadopoulos, P. P. 2010, ApJ, 720, 226CrossRefGoogle Scholar
Pflamm-Altenburg, J., Weidner, C., & Kroupa, P. 2009, MNRAS, 395, 394CrossRefGoogle Scholar
Ramrez Alegra, S., Borissova, J., Chené, A.-N., et al. 2016, A&A, 588, A40Google Scholar
Schneider, F. R. N., Sana, H., Evans, C. J., et al. 2018, Science, 359, 69CrossRefGoogle Scholar
Schulz, C., Pflamm-Altenburg, J., & Kroupa, P. 2015, A&A, 582, A93Google Scholar
Stephens, I. W., Gouliermis, D., Looney, L. W., et al. 2017, ApJ, 834, 94CrossRefGoogle Scholar
Watts, A. B., Meurer, G. R., Lagos, C. D. P., et al. 2018, MNRAS, 477, 5554CrossRefGoogle Scholar
Weidner, C., Kroupa, P., & Pflamm-Altenburg, J. 2013, MNRAS, 434, 84CrossRefGoogle Scholar
Yan, Z., Jerabkova, T., & Kroupa, P. 2017, A&A, 607, A126Google ScholarPubMed
Zhang, Z.-Y., Romano, D., Ivison, R. J., et al. 2018, Nature, 558, 260CrossRefGoogle Scholar
Zonoozi, A. H., Haghi, H., & Kroupa, P. 2016, ApJ, 826, 89CrossRefGoogle Scholar
Zonoozi, A. H., Mahani, H., & Kroupa, P. 2019, MNRAS, 483, 46CrossRefGoogle Scholar