Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T09:12:36.314Z Has data issue: false hasContentIssue false

On the Radio Emitting Particles of the Crab Nebula: Stochastic Acceleration Model

Published online by Cambridge University Press:  04 June 2018

Shuta J. Tanaka*
Affiliation:
Department of Physics, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Kobe, Hyogo 658-8501, Japan, email: sjtanaka@center.konan-u.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The standard shock acceleration model of pulsar wind nebulae (PWNe) does not account for the hard spectrum in radio wavelengths. The origin of the radio-emitting particles is also important to determine the pair production efficiency in the pulsar magnetosphere. Here, we propose a possible resolution for the particle energy distribution in PWNe; the radio-emitting particles are not accelerated at the pulsar wind termination shock but are stochastically accelerated by turbulence inside PWNe. We upgrade our past one-zone spectral evolution model including the energy diffusion, i.e., the stochastic acceleration, and apply to the Crab Nebula. For a particle injection to the stochastic acceleration process, we consider the continuous injection from the supernova ejecta or the impulsive injection associated with supernova explosion. The observed broadband spectrum and the decay of the radio flux are reproduced by tuning the amount of the particle injected to the stochastic acceleration process. Our results imply that some unveiled mechanisms, such as back reaction to the turbulence, are required to make the energies of stochastically and shock accelerated particles comparable.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Abdo, A. A., Ackermann, M., & Ajello, M., et al. 2010, ApJ, 708, 1254Google Scholar
Arons, J. 2012, Space Sci. Revs, 173, 341Google Scholar
Bietenholz, M. F., & Kronberg, P. P., 1991, ApJ, 368, 231Google Scholar
Kennel, C. F., & Coroniti, F. V., 1984a, ApJ, 283, 694Google Scholar
Kennel, C. F., & Coroniti, F. V., 1984b, ApJ, 283, 710CrossRefGoogle Scholar
Komissarov, S. S., 2013, MNRAS, 428, 2459CrossRefGoogle Scholar
Kuiper, L., Hermsen, W., & Cusumano, G., et al. 2001, A&A, 378, 918Google Scholar
Lyutikov, M. 2003, MNRAS, 339, 623CrossRefGoogle Scholar
Macías-Pérez, J. F., Mayet, F., Aumont, J., & Désert, F.-X., 2010, ApJ, 711, 417Google Scholar
Olmi, B., Del Zanna, L., Amato, E., Bandiera, R., & Bucciantini, N., 2014, MNRAS, 438, 1518Google Scholar
Porth, O., Komissarov, S. S., & Keppens, R., 2014, MNRAS, 443, 547CrossRefGoogle Scholar
Rees, M. J., & Gunn, J. E., 1874, MNRAS, 167, 1Google Scholar
Schlickeiser, R., 1989, ApJ, 336, 243Google Scholar
Shibata, S., Tomatsuri, H., Shimanuki, M., Saito, K., & Mori, K., 2003, MNRAS, 346, 841Google Scholar
Tanaka, S. J., 2016, ApJ, 827, 135CrossRefGoogle Scholar
Tanaka, S. J., & Asano, K., 2017, ApJ, 841, 78Google Scholar
Tanaka, S. J., & Takahara, F., 2010, ApJ, 715, 1248Google Scholar
Tanaka, S. J., & Takahara, F., 2011, ApJ, 741, 40Google Scholar
Tanaka, S. J. & Takahara, F. 2013, Prog. Theor. Exp. Phys., 123E01Google Scholar
Tanaka, S. J., & Takahara, F., 2013, MNRAS, 429, 2945Google Scholar
Temim, T., Gehrz, R. D., & Woodward, C. E., et al. 2006, ApJ, 132, 1610Google Scholar
Timokhin, A. N., & Harding, A. K., 2015, ApJ, 810, 144Google Scholar