Hostname: page-component-7dd5485656-zlgnt Total loading time: 0 Render date: 2025-10-30T20:40:58.691Z Has data issue: false hasContentIssue false

Mass models of disk galaxies from gas dynamics

Published online by Cambridge University Press:  30 October 2025

Federico Lelli*
Affiliation:
INAF - Arcetri Astrophysical Observatory, Largo Enrico Fermi 5, 50125, Florence, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I review methods and techniques to build mass models of disk galaxies from gas dynamics. I focus on two key steps: (1) the derivation of rotation curves using 3D emission-line datacubes from H I, CO, and/or Hαobservations, and (2) the calculation of the gravitational field from near-infrared images and emission-line maps, tracing the stellar and gas mass distributions, respectively. Mass models of nearby galaxies led to the establishment of the radial acceleration relation (RAR): the observed centripetal acceleration from rotation curves closely correlates with that predicted from the baryonic distribution at each galaxy radius, even when dark matter supposedly dominates the gravitational field. I conclude by discussing the (uncertain) location of Local Group dwarf spheroidal galaxies on the RAR defined by more massive disk galaxies.

Information

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bacchini, C., Fraternali, F., Pezzulli, G., & Marasco, A. 2020, The volumetric star formation law for nearby galaxies. Extension to dwarf galaxies and low-density regions. A&A, 644, A125.Google Scholar
Barat, D., D’Eugenio, F., Colless, M., Sweet, S. M., Groves, B., & Cortese, L. 2020, SH$$$DE: survey description and mass-kinematics scaling relations for dwarf galaxies. MNRAS, 498(4), 5885.CrossRefGoogle Scholar
Begeman, K. G. 1989, HI rotation curves of spiral galaxies. I. NGC 3198. A&A, 223, 47.Google Scholar
Binney, J. & Tremaine, S. 1994,. Galactic Dynamics. Princeton University Press, Princeton, USA.Google Scholar
Bouché, N., Carfantan, H., Schroetter, I., Michel-Dansac, L., & Contini, T. 2015, GalPak3D: A Bayesian Parametric Tool for Extracting Morphokinematics of Galaxies from 3D Data. AJ, 150(3), 92.CrossRefGoogle Scholar
Burkert, A., Genzel, R., Bouché, N., & 13 co-authors 2010, High-redshift Star-forming Galaxies: Angular Momentum and Baryon Fraction, Turbulent Pressure Effects, and the Origin of Turbulence. ApJ, 725(2), 2324.CrossRefGoogle Scholar
Cappellari, M. 2002, Efficient multi-Gaussian expansion of galaxies. MNRAS, 333(2), 400410.CrossRefGoogle Scholar
Casertano, S. 1983, Rotation curve of the edge-on spiral galaxy NGC 5907: disc and halo masses. MNRAS, 203, 735.CrossRefGoogle Scholar
Chandrasekhar, S. 1969,. Ellipsoidal figures of equilibrium. Yale University Press, New Haven, USA.Google Scholar
Courteau, S. 1997, Optical Rotation Curves and Linewidths for Tully-Fisher Applications. AJ, 114, 2402.CrossRefGoogle Scholar
Davis, T. A., Alatalo, K., Bureau, M., & 23 co-authors 2013, The ATLAS3D Project - XIV. The extent and kinematics of the molecular gas in early-type galaxies. MNRAS, 429(1), 534.CrossRefGoogle Scholar
Dawson, J. M., Davis, T. A., Gomez, E. L., & Schock, J. 2021, A self-supervised, physics-aware, Bayesian neural network architecture for modelling galaxy emission-line kinematics. MNRAS, 503(1), 574.CrossRefGoogle Scholar
de Blok, W. J. G. 2010, The Core-Cusp Problem. Advances in Astronomy, 2010, 789293.CrossRefGoogle Scholar
Desmond, H. 2023, The underlying radial acceleration relation. arXiv e-prints, arXiv:2303.11314.Google Scholar
Di Teodoro, E. M. & Fraternali, F. 2015, 3D BAROLO: a new 3D algorithm to derive rotation curves of galaxies. MNRAS, 451(3), 30213033.CrossRefGoogle Scholar
Emsellem, E., Monnet, G., & Bacon, R. 1994, The multi-gaussian expansion method: a tool for building realistic photometric and kinematical models of stellar systems I. The formalism. A&A, 285, 723.Google Scholar
Frank, B. S., de Blok, W. J. G., Walter, F., Leroy, A., & Carignan, C. 2016, The Impact of Molecular Gas on Mass Models of Nearby Galaxies. AJ, 151(4), 94.CrossRefGoogle Scholar
Freeman, K. C. 1970, On the Disks of Spiral and so Galaxies. ApJ, 160, 811.CrossRefGoogle Scholar
Gentile, G., Burkert, A., Salucci, P., Klein, U., & Walter, F. 2005, The Dwarf Galaxy DDO 47 as a Dark Matter Laboratory: Testing Cusps Hiding in Triaxial Halos. ApJ, 634(2), L145.CrossRefGoogle Scholar
Iorio, G., Fraternali, F., Nipoti, C., Di Teodoro, E., Read, J. I., & Battaglia, G. 2017, LITTLE THINGS in 3D: robust determination of the circular velocity of dwarf irregular galaxies. MNRAS, 466(4), 4159.Google Scholar
Kamphuis, P., Józsa, G. I. G., Oh, S. H., Spekkens, K., Urbancic, N., Serra, P., Koribalski, B. S., & Dettmar, R. J. 2015, Automated kinematic modelling of warped galaxy discs in large H I surveys: 3D tilted-ring fitting of H I emission cubes. MNRAS, 452(3), 31393158.CrossRefGoogle Scholar
Kent, S. M. 1986, Dark matter in spiral galaxies. I. Galaxies with optical rotation curves. AJ, 91, 1301.Google Scholar
Lelli, F. 2022, Gas dynamics in dwarf galaxies as testbeds for dark matter and galaxy evolution. Nature Astronomy, 6, 35.CrossRefGoogle Scholar
Lelli, F., McGaugh, S. S., & Schombert, J. M. 2016, SPARC: Mass Models for 175 Disk Galaxies with Spitzer Photometry and Accurate Rotation Curves. AJ, 152(6), 157.CrossRefGoogle Scholar
Lelli, F., McGaugh, S. S., Schombert, J. M., & Pawlowski, M. S. 2017, One Law to Rule Them All: The Radial Acceleration Relation of Galaxies. ApJ, 836(2), 152.CrossRefGoogle Scholar
Lelli, F., Verheijen, M., Fraternali, F., & Sancisi, R. 2012, Dynamics of starbursting dwarf galaxies. II. UGC 4483. A&A, 544, A145.Google Scholar
Li, P., Lelli, F., McGaugh, S., & Schombert, J. 2018, Fitting the radial acceleration relation to individual SPARC galaxies. A&A, 615, A3.Google Scholar
Li, P., Lelli, F., McGaugh, S., & Schombert, J. 2020, A Comprehensive Catalog of Dark Matter Halo Models for SPARC Galaxies. ApJS, 247(1), 31.CrossRefGoogle Scholar
Marasco, A., Oman, K. A., Navarro, J. F., Frenk, C. S., & Oosterloo, T. 2018, Bars in dark-matter-dominated dwarf galaxy discs. MNRAS, 476(2), 2168.CrossRefGoogle Scholar
McGaugh, S. S., Lelli, F., & Schombert, J. M. 2016, Radial Acceleration Relation in Rotationally Supported Galaxies. PRL, 117(20), 201101.CrossRefGoogle ScholarPubMed
McGaugh, S. S., Lelli, F., & Schombert, J. M. 2020, Scaling Relations for Molecular Gas and Metallicity: Impact on the Baryonic Tully-Fisher Relation. RNAAS, 4(4), 45.Google Scholar
McGaugh, S. S. & Schombert, J. M. 2015, Weighing Galaxy Disks With the Baryonic Tully-Fisher Relation. ApJ, 802(1), 18.CrossRefGoogle Scholar
Meurer, G. R., Carignan, C., Beaulieu, S. F., & Freeman, K. C. 1996, NGC 2915.II.A Dark Spiral Galaxy With a Blue Compact Dwarf Core. AJ, 111, 1551.Google Scholar
Milgrom, M. 1983, A modification of the Newtonian dynamics - Implications for galaxies. ApJ, 270, 371.CrossRefGoogle Scholar
Noordermeer, E. 2008, The rotation curves of flattened Sérsic bulges. MNRAS, 385(3), 1359.CrossRefGoogle Scholar
Noordermeer, E., van der Hulst, J. M., Sancisi, R., Swaters, R. S., & van Albada, T. S. 2007, The mass distribution in early-type disc galaxies: declining rotation curves and correlations with optical properties. MNRAS, 376(4), 1513.CrossRefGoogle Scholar
Oh, S.-H., Hunter, D. A., Brinks, E., & 13 co-authors 2015, High-resolution Mass Models of Dwarf Galaxies from LITTLE THINGS. AJ, 149(6), 180.CrossRefGoogle Scholar
Rogstad, D. H., Lockhart, I. A., & Wright, M. C. H. 1974, Aperture-synthesis observations of H I in the galaxy M83. ApJ, 193, 309.CrossRefGoogle Scholar
Sancisi, R. The visible matter – dark matter coupling. In Dark Matter in Galaxies 2004, volume 220 of IAU Symposia, 233.CrossRefGoogle Scholar
Schoenmakers, R. H. M., Franx, M., & de Zeeuw, P. T. 1997, Measuring non-axisymmetry in spiral galaxies. MNRAS, 292(2), 349364.CrossRefGoogle Scholar
Schombert, J., McGaugh, S., & Lelli, F. 2022, Stellar Mass-to-light Ratios: Composite Bulge+Disk Models and the Baryonic Tully-Fisher Relation. AJ, 163(4), 154.CrossRefGoogle Scholar
Shelest, A. & Lelli, F. 2020, From spirals to lenticulars: Evidence from the rotation curves and mass models of three early-type galaxies. A&A, 641, A31.Google Scholar
Simon, J. D., Bolatto, A. D., Leroy, A., Blitz, L., & Gates, E. L. 2005, High-Resolution Measurements of the Halos of Four Dark Matter-Dominated Galaxies: Deviations from a Universal Density Profile. ApJ, 621(2), 757.CrossRefGoogle Scholar
Spekkens, K. & Sellwood, J. A. 2007, Modeling Noncircular Motions in Disk Galaxies: Application to NGC 2976. ApJ, 664(1), 204.CrossRefGoogle Scholar
Spitzer, Lyman, J. 1942, The Dynamics of the Interstellar Medium. III. Galactic Distribution. ApJ, 95, 329.Google Scholar
Swaters, R. A., Sancisi, R., van Albada, T. S., & van der Hulst, J. M. 2009, The rotation curves shapes of late-type dwarf galaxies. A&A, 493, 871.Google Scholar
Trachternach, C., de Blok, W. J. G., Walter, F., Brinks, E., & Kennicutt, R. C., J. 2008, Dynamical Centers and Noncircular Motions in THINGS Galaxies: Implications for Dark Matter Halos. AJ, 136(6), 2720.CrossRefGoogle Scholar
van Albada, T. S. & Sancisi, R. 1986, Dark matter in spiral galaxies. Royal Society of London Philosophical Transactions Series A, 320, 447.Google Scholar
van der Kruit, P. C. & Freeman, K. C. 2011, Galaxy Disks. ARA&A, 49, 301371.Google Scholar
Wolf, J., Martinez, G. D., Bullock, J. S., Kaplinghat, M., Geha, M., Muñoz, R. R., Simon, J. D., & Avedo, F. F. 2010, Accurate masses for dispersion-supported galaxies. MNRAS, 406, 1220.Google Scholar