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Abstract. I review methods and techniques to build mass models of disk galaxies from gas
dynamics. I focus on two key steps: (1) the derivation of rotation curves using 3D emission-line
datacubes from H I, CO, and/or Hα observations, and (2) the calculation of the gravitational field
from near-infrared images and emission-line maps, tracing the stellar and gas mass distributions,
respectively. Mass models of nearby galaxies led to the establishment of the radial acceleration
relation (RAR): the observed centripetal acceleration from rotation curves closely correlates
with that predicted from the baryonic distribution at each galaxy radius, even when dark matter
supposedly dominates the gravitational field. I conclude by discussing the (uncertain) location
of Local Group dwarf spheroidal galaxies on the RAR defined by more massive disk galaxies.
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1. Introduction

Rotation curves from gas kinematics are one of the most direct methods to measure
the gravitational potential (Φ) of galaxies and, therefore, constrain their baryonic and
dark matter (DM) content. The reason is simple. In gas disks, the rotation velocity
(Vrot) is typically much larger than the velocity dispersion (σV), so pressure support is
negligible (Vrot/σV � 1) and Vrot is a direct proxy of the circular velocity of a test particle
(V 2

c = −R∇Φ). For example, this is not the case for the stellar components of galaxies
because both rotation and pressure support can be important, so Vc must be estimated
by solving the Jeans’ equations, which require either full 6D phase-space information (as
for the Milky Way thanks to the Gaia mission) or assumptions on the velocity dispersion
tensor (as for external galaxies with stellar spectroscopy).

Over the past 20 years, the study of gas dynamics made enormous progress thanks to
dedicated surveys of different emission lines, probing different gas phases: the H I line at
21 cm tracing atomic gas, CO lines in the submm tracing molecular gas, and Balmer lines
in the optical (mostly the Hα line) tracing warm ionized gas. Another key advancement
has been the availability of near infrared (NIR) images from space telescopes, such as
Spitzer and WISE. The NIR light is only marginally affected by dust extinction and
represents the best tracer of the stellar mass distribution, so it allows us to accurately
compute the stellar gravitational field.

For galaxies in groups and in the field, H I disks are typically more extended than
the stellar components (on average by ∼4 times the NIR half-light radii Rh, Lelli et al.
2016), so they trace the gravitational potential out to the most DM-dominated regions.
To date, the main disadvantage of H I observations is the low spatial resolution (typically
5′′ − 30′′) but the situation will drastically improve with the upcoming Square Kilometer

© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical

Union. This is an Open Access article, distributed under the terms of the Creative Commons Attribution

licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re- use, distribution and

reproduction, provided the original article is properly cited.

https://doi.org/10.1017/S1743921323001643 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921323001643
https://orcid.org/0000-0002-9024-9883
mailto:federico.lelli@inaf.it
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1743921323001643&domain=pdf
https://doi.org/10.1017/S1743921323001643


336 F. Lelli

Array (SKA). On the other hand, CO and Hα disks are typically confined to the inner
galaxy regions, but can be routinely observed at spatial resolutions of ∼ 1′′ − 2′′, which
can be pushed further down to sub-arcsec resolutions thanks to adaptive optics for Hα
data and ALMA long baselines for CO data. The best approach to study gas kinematics
is a multiwavelength one, combing CO and/or Hα data at high resolution in the inner
parts with H I data at lower resolutions in the outer regions.

In this brief review, I focus on methods and techniques to measure circular-velocity
curves (Sect. 2) and build mass models of galaxies (Sect. 3). The scientific implications
of these observational and modeling efforts have been extensively reviewed elsewhere
(de Blok 2010; McGaugh et al. 2020; Lelli 2022) and will not be repeated here. I will
only mention the radial acceleration relation (RAR) in context with Local Group (LG)
dwarf galaxies (Sect. 4).

2. Measuring the circular-velocity curve

2.1. Circular motions

For a geometrically and optically thin disk with nearly circular orbits, the projected
line-of-sight velocity Vl.o.s. at a sky position (x, y) is given by

Vlos(x, y) = Vsys + Vrot(R) sin(i) cos(θ), (1)

where Vsys is the systemic velocity (due to the Hubble expansion and peculiar motions),
Vrot is the rotational velocity at radius R in the galaxy plane, i is the inclination angle
between the normal to the disk and the line of sight, and θ is the azimuthal angle in the
disk plane given by

cos(θ) =
−(x− x0) sin(P.A.) + (y− y0) cos(P.A.)

R
, (2)

where (x0, y0) are the center coordinates and P.A. is the position angle taken in anti-
clockwise direction between the North direction and the major axis of the projected disk.
Thus, the rotation curve Vrot(R) can be measured knowing six parameters: Vsys, x0, y0,
P.A., and i.

The most basic approach to measure Vrot is to obtain slit spectroscopy along the disk
major axis (θ= 0◦), so that Vrot(R) = [Vlos(R) − Vsys]/ sin(i). This 1D approach must
assume (x0, y0), P.A., and i from independent observations (e.g., optical images) and
cannot account for warped disks in which P.A. and i can vay with R. A better strat-
egy is to obtain velocity maps (Vl.o.s. at each sky position) and fit them with Eq. 1
(Begeman 1989). This 2D approach is robust for well-resolved disks with hundreds of
resolution elements, but becomes unreliable in less resolved disks (e.g., dwarf and/or
distant galaxies) because of beam-smearing effects, which systematically underestimate
Vrot and overestimate σV (e.g., Di Teodoro and Fraternali 2015).

The best approach is to fit directly the 3D emission-line cube (with two spatial axes and
one velocity axis) to reproduce the full shape of the line profiles at each (x, y). In this 3D
approach, disk models are built starting from some rotation curve Vrot(R), intrinsic veloc-
ity dispersion profile σV(R), gas surface density profile Σgas(R), and disk thickness zgas.
The disk models are projected on the sky to produce a mock cube, which is smoothed to
the same spectral and spatial resolution of the data (reproducing beam smearing effects)
and compared with the observed cube until a best-fit is found (Swaters et al. 2009). The
3D approach exploits the full information available in the data, but requires more free
parameters than the 2D approach to model σV, Σgas, and zgas. In most cases, Σgas can
be inferred from the observed intensity map (with the exception of edge-on galaxies),
while zgas is generally unmeasurable because is below the angular resolution, so it is
fixed to sensible values. Over the past years, several public 3D fitting softwares became
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available: 3DBarolo (Di Teodoro and Fraternali 2015) and FAT (Kamphuis et al. 2015)
adopt a so-called tilted-ring modeling, while KinMS (Davis et al. 2013) and GalPak3D
(Bouché et al. 2015) use a parametric modeling.

The tilted-ring modeling (Rogstad et al. 1974; Begeman 1989) divides the gas disk
into N rings (whose separation is typically set by the spatial resolution) and fits Eq. 1
independently in each ring. It is common to perform multiple, iterative fits. After a first
fit, Vsys and (x0, y0) are measured as the mean (or median) values across the rings and
fixed in subsequent fits with less free parameters. The angles P.A. and i can be estimated
in the same way unless the gas disk is warped: in such cases the radial variations of P.A.
and i are fitted with appropriate smooth functions, which are then imposed in a final fit
to infer Vrot and σV in each ring.

The parametric modeling (e.g., Courteau 1997) uses parameteric functions to describe
Vrot(R) and fits a global model to the whole disk. Warps can be accounted for, but
require a “trial and fail” procedure to choose appropriate functions to model P.A.(R) and
i(R). The parametric modeling has less free parameters than the tilted-ring modeling;
this facilitates the use of Markov Chain Monte Carlo algorithms (Bouché et al. 2015)
and neural networks (Dawson et al. 2021). In the parametric modeling, Vrot may be
described by an empirical fitting function, such as Vt arctan(R/Rt) (Courteau 1997), or
by a mass model that includes different velocity components (see Sect. 3). The parametric
modeling, however, does not provide an actual, empirical derivation of the rotation curve
because a smooth shape is imposed, neglecting possible real features in Vrot(R). Moreover
the intrinsic σV is often described by a single, radially averaged value, which may be
dominated by the inner bright regions during the 3D fit. Alternatively, one must assume
a parametric functional form for σV(R) as well.

2.2. Noncircular motions

Noncircular motions may affect the measured Vrot � Vc. The simplest form of
non-circular motion is a radial flow (Vrad) in the disk plane, giving an additional
term Vrad(R) sin(i) sin(θ) in the right-end side of Eq. 1. More generally, Vrot and
Vrad are the first-order terms of an harmonic expansion of the line-of-sight velocity
(Schoenmakers et al. 1997):

Vl.o.s.(x, y) = Vsys + sin(i)
∑
m=1

[cm(R) cos(mθ) + sm(R) sin(mθ)] , (3)

where the harmonic order m= 1 gives c1 = Vrot and s1 = Vrad. A perturbation of the grav-
itational potential of order m causes harmonics of order m− 1 and m+ 1 in projection
(Schoenmakers et al. 1997). For example, bar-like and oval distortions with m= 2 give
m= 1 and m= 3 terms in Vl.o.s (Spekkens and Sellwood 2007). The harmonic decompo-
sition further increases the number of free parameters in tilted-ring fits, so it can only be
applied to high-resolution, high-sensitivity data. To date, this method has been applied
up to m= 3 with 2D fits, but further progress may be done using a 3D approach that
models the full line profiles.

H I studies find that noncircular motions are typically smaller than 10 km s−1, cor-
responding to ∼1% to ∼10% of Vrot (Gentile et al. 2005; Trachternach et al. 2008;
Oh et al. 2015; Marasco et al. 2018). They may be larger in barred and starburst
galaxies, and become progressively more important in dwarf galaxies with small Vrot
(e.g., Lelli et al. 2012). Nevertheless, nonciruclar motions are usually comparable to
uncertainties in Vrot, which are computed considering the difference in Vrot from the
approaching and receding sides of the disk (Swaters et al. 2009). These uncertainties
are not formal errors, but quantify global kinematic asymmetries, effectively capturing
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noncircular motions in most cases. Noncircular motions could be larger in Hα disks
(Simon et al. 2005; Spekkens and Sellwood 2007), possibly because ionized gas is more
closely related to the sites of star formation activity than atomic gas.

2.3. Random motions

Pressure support due to random motions is often negligible in gas disks. For atomic and
molecular gas, the intrinsic σV is typically between 5− 15 km s−1, so effectively Vc = Vrot
for galaxies with Vrot >∼ 50 km s−1 (Swaters et al. 2009) and pressure support become
important only in the tiniest gas-bearing dwarfs (Iorio et al. 2017). The situation can be
different for ionized gas because the intrinsic σV can be higher (∼ 15 − 30 km s−1), so
pressure support can be important in galaxies with Vrot <∼ 100 km s−1 (Barat et al. 2020).
For both atomic and ionized gas, the velocity dispersion is largely driven by turbulent
gas motions rather than thermal motions, so the pressure support is also referred to as
turbulence support.

For gas disks with Vrot/σV <∼ 4, pressure support can be accounted for using the so-
called asymmetric-drift correction (ADC, Binney and Tremaine 1994). Assuming that σV
is isotropic (as expected for collisional gas due to frequent energy exchanges), we obtain

V 2
c = V 2

rot − σ2
V

(
∂ ln ρgas
∂ lnR

+
∂ ln σ2

V

∂ lnR

)
, (4)

where ρgas(R, z) is the gas volume density, which is not directly observable.
A common approach (Meurer et al. 1996) is to assume that the vertical density dis-

tribution does not vary with radius, so ∂ ln ρgas/∂ lnR= ∂ ln Σgas/∂ lnR, where the gas
surface density profile Σgas(R) can be traced from emission-line maps. Then, one may
either estimate the radial derivatives of Σgas and σV separately, or fit the product Σgasσ

2
V

with a smooth parametric function with a trivial radial derivative (Iorio et al. 2017). The
main caveat with this approach is that the thickness of H I disks may actually increase
with radius (Bacchini et al. 2020).

Another approach to solve Eq. 4 (Burkert et al. 2010) is to consider a self-gravitating
disk where σV is independent of z, so ρgas(R, z) = ρ0(R)sech2(z/zd) (Spitzer 1942) where
ρ0(R) = πGNΣ2

gas(R)/2σ2
V(R) is the volume density at z = 0 and GN is Newton’s con-

stant. The gas disks of galaxies, however, are not self-gravitating. A self-consistent ADC
should use an iterative approach: (i) measure Φ(R, z) fitting some initial Vc(R) with a
3D mass model (Sect. 3), (ii) measure the vertical structure as a function of R assuming
hydrostatic equilibrium for the given Φ(R, z), (iii) measure again Vrot, σV, and Vc for the
new vertical structure, and (iv) iterate.

At any rate, the dominant uncertainty in the ADC is driven by σV(R). In the relevant
cases (dwarf galaxies), σV is often poorly measured and assumed to be constant with
radius. Then, for an exponential gas disk with scale length Rd, Eq. 4 simplifies to V 2

c =
V 2
rot + σ2

V(R/Rd). This equation can be used as a zeroth-order approximation in poorly
resolved galaxies.

3. Mass Models

3.1. Measuring the baryonic gravitational field

To study the relative distribution of baryons and DM in galaxies from the measured
Vc(R), it is necessary to compute the Newtonian gravitational acceleration from various
mass components (van Albada and Sancisi 1986). In cylindrical coordinates (R, z), a
razor-thin exponential disk (Freeman 1970) gives the following velocity contribution in
the disk plane (z = 0):
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V 2
c (R) =

GNMd

Rd
2y2 [I0(y)K0(y) − I1(y)K1(y)] (5)

where Md the disk mass, Rd the disk scale length, y=R/(2Rd), and In and Kn are mod-
ified Bessel functions of the first and second kind, respectively. A razor-thin exponetial
disk is just a zeroth-order representation of the mass distribution in galaxies because
it neglects the finite thickness of stellar and gas disks, as well as relevant features in
their mass distribution such as inner concentrations (bulges, pseudobulges, nuclei), inner
depressions, outer breaks, bumps, wiggles, and so on. For a more realistic model, we need
to numerically solve ∇2Φi = 4πGNρi for each baryonic component i. There are two main
approaches: (1) to measure the projected radial density profile Σ(R) and make assump-
tions on the intrinsic 3D geometry, or (2) to fit 2D images with the multi-Gaussian
expansion (MGE) method (Emsellem et al. 1994).

In the former approach, in cylindrical symmetry, we have ρ(R, z) = Σ(R)Z(z) where
Σ(R) is the observed radial density profile (from optical/NIR images for stars and
emission-line maps for gas) and Z(z) is an assumed vertical density profile. The Z(z)
profile can be directly studied only in edge-on disks; common parametrizations are
sech2(z/zd), exp(−z/zd), or exp(−z2/z2d), where the scale height zd is found to correlate
with the scale length Rd (van der Kruit and Freeman 2011). The velocity contribution
at z = 0 is given by (Casertano 1983):

V 2
c

(R) = −8GNR

∫ ∞

0

∂Σ(R̃)

∂R̃

[∫ ∞

0

Z(z̃)
K (p) − E (p)√

pRR̃
dz̃

]
R̃dR̃, (6)

where K and E are complete elliptic integrals of the first and second kind, respec-
tively, and p= x−√

x2 − 1 with x= (R2 + R̃2 + z2)/(2R̃R). Notably, Vc(R) depends on
∂Σ(R)/∂R so bumps and wiggles in the mass profile have a relevant effect. In addition,
Vc at R is given by a double integral in dR̃ and dz̃ from zero to infinity, so depends on
the entire mass distribution. This occurs because Newton’s shell theorem does not apply
in disks : mass at R>R0 does contribute to the gravitational field at R0. As a result, V 2

c

can sometimes be “negative” at some radii, in the sense that the gravitational field V 2
c /R

is directed towards the outer galaxy regions because the mass at R>R0 pulls more than
the mass at R<R0. This effect often occurs in the gravitational contribution of H I disks
with central holes or strong depressions (see Fig. 1).

If there is a central mass concentration (a “bulge”), its contribution can be treated
separately from the disk. In spherical symmetry, the velocity contribution at z = 0 is
given by (Kent 1986):

V 2
c

(R) =
2πGN

R

∫ R

0

R̃Σ(R̃)dR̃+
4GN

R

∫ ∞

R

[
sin−1(R/R̃) −R(R̃2 −R2)−1/2

]
R̃Σ(R̃)dR̃.

(7)

Eq. 7 is simply V 2
c (r) =GNM(r)/r considering the deprojection of spherical shells of

radius r.
For an oblate spheroid with intrinsic axial ratio q observed at an inclination i, the

velocity contribution at z = 0 is given by (Noordermeer 2008):

V 2
c

(R) = −4GN

√
q2 sin2(i) + cos2(i)

∫ R

T=0

[∫ ∞

R̃=T

∂Σ(R̃)

∂R̃

dR̃√
R̃2 − T 2

]
T 2dT√

R2 − T 2 + q2T 2)
. (8)
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Figure 1. Left panel : circular-velocity curves for a model galaxy with a projected exponential
density profile and total mass of 5 × 1010 M�, assuming different geometries: razor-thin disk
(Eq. 5), thick exponential disk with zd = 1/3Rd (Eq. 6), oblate spheroid with q = 0.5 (Eq. 8 or
Eq. 9), and sphere (Eq. 7). The Vc of a corresponding point mass is also shown. Flattened mass
distributions reach the Keplerian decline at R>∼ 10Rd. Right panel : Mass model for the spiral
galaxy UGC 3546. The Hα+HI rotation curve (black points with errorbars, Noordermeer et al.
2007) is well reproduced at R<∼ 6 kpc by the baryonic gravitational field computed from NIR
photometry (Lelli et al. 2016). Note that Vgas is negative at 5 <∼R/kpc <∼ 10.

Assuming that the spheroid’s inclination i is the same as that of the gas disk (from
kinematic fits, see Sect. 2), the mean axial ratio q̃ of the observed isophotes (from optical
or NIR images) can be used to infer the intrinsic axial ratio as q2 = [q̃2 − cos2(i)]/ sin2(i).

For a spheroid where q varies with R, the MGE method (Emsellem et al. 1994) is most
effective. The 2D image is fitted by a sum of N 2D Gaussian functions j with luminosity
Lj , standard deviation σj , axial ratio qj , and P.A.j . The potential Φj(R, z) of a Gaussian
component stratified on oblate concentric ellipsoids is given by (Chandrasekhar 1969;
Cappellari 2002):

Φj(R, z) =
2GNΥjLj√

2πσj

∫ 1

0

exp

[−T 2

2σ2
j

(
R2 +

z2

1 − T 2 + q2jT
2

)]
(1 − T 2 + q2jT

2)−1/2dT

(9)

where Υj is the mass-to-light ratio of the component j. Thus, one can compute the total
potential Φ and infer the circular velocity V 2

c (R, z = 0) = −R∇Φ. The MGE approach
infers the intrinsic 3D distribution from fitting observed isophotes in the 2D image. This
is robust for early-type galaxies with regular isophotes, but becomes more uncertain for
late-type galaxies (with spiral arms, star formation, dust lanes, etc.) and for gas maps
with irregular distributions.

Figure 1 shows Vc(R) for a model galaxy with M = 5 × 1010M� and a projected surface
density profile Σ(R) = Σ0 exp(−R/Rd), using the various equations described above. In
regions probed by gas kinematics (R<∼ 6Rd − 7Rd), differences in Vc due to geometry
can be up to ∼ 25%. Importantly, the Keplerian decline of the corresponding point mass
is reached only at R>∼ 10Rd or equivalently R>∼ 6Rh. Thus, the concept of “dynamical
mass” can be ill-defined unless (1) we model the entire mass distribution for R→∞,
and/or (2) we have measurements out to very large R, where the monopole term of
Φ(R, z) dominates and Mdyn(R) � V 2

c R/GN.
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3.2. Measuring the baryonic masses

For a typical galaxy, the expected circular velocity from baryons is given by:

V 2
bar = Υbul|Vbul|Vbul + Υdisk|Vdisk|Vdisk + Υgas|Vgas|Vgas (10)

where Vbul, Vdisk, and Vgas are the contributions from stellar bulge, stellar disk, and gas
disk, respectively. Υbul, Υdisk, and Υgas are dimensionless factors (mass-to-light ratios)
that scale the contributions according to the total mass of each component, defined for
R→∞. These factors can be either fixed to some fiducial values, or used as free param-
eters when fitting the rotation curve, ideally imposing a Gaussian prior in a Bayesian
context (e.g., Li et al. 2020).

The stellar contribution is best traced using NIR images. For late-type disks (Sc-dI),
the bulge contribution is often negligible and inner mass concentrations (“pseudobulges”)
can be modeled together with the disk. For early-type disks (S0-Sb), instead, it is appro-
priate to separate bulge & disk components because they have different geometries and
stellar populations. The corresponding mass-to-light ratios can be estimated in several
ways (e.g., McGaugh and Schombert 2015). Stellar population models typically give
Υbul � 0.7 − 1.0 and Υdisk � 0.3 − 0.7 at Spizer 3.6 μm, depending on the assumed star-
formation history and chemical enrichment (Schombert et al. 2022). For galaxies on the
star-forming main sequence, it is sensible to assume Υdisk � 0.5 with a 1σ variation of
∼25% (McGaugh and Schombert 2015). Naturally, Υdisk is expected to vary with radius
because of metallicity and stellar population gradients, but the effect is somewhat degen-
erate with geometry (Fig. 1) and subdominant with respect to the absolute calibration
in Υdisk. Notably, to implement a radially variable mass-to-light ratio, we cannot simply
use some Υdisk(R) in Eq. 10 but have to recalculate Vdisk using the integrals in Sect. 3.1
for a rescaled surface density profiles Υdisk(R)Σdisk(R).

The gas contribution is usually dominated by atomic gas, so H I maps are used to
compute Vgas. The conversion from H I luminosity to H I mass is known from atomic
physics, so Υgas must only account for Helium and heavier elements. Considering big bang
nucleosynthesis and stellar chemical enrichment, one has Υgas � 1.34 − 1.41 depending
on the gas metallicity (McGaugh et al. 2020). The uncertainty on Vgas is dominated by
the absolute H I flux calibration, which is typically ∼10%. The smaller contribution of
molecular gas can be separately computed using CO maps (Frank et al. 2016), but CO
& H I data are rarely available for the same galaxy samples. Luckily, molecular gas is
distributed in a similar way as the stellar disk (similar Rd), so its contribution in star-
forming galaxies can be roughly taken into account with a systematic correction to V 2

disk

of the order of 7% (McGaugh et al. 2020), or simply included in the error budget of Υdisk.
Warm ionized gas (T � 104 K) typically gives a negligible mass contribution, while hot
ionized gas (T � 106−7 K) is thought to form low-density halos extending over hundreds
of kpc, so its gravitational contribution is negligible within the H I disk.

The DM contribution can be added to Eq. 10 assuming a spherical halo with a given
volume density profile. Equations for common halo models are summarized in Li et al.
(2020).

4. Radial acceleration relation

Thanks to large H I and NIR surveys, mass models have been built for hundreds
of nearby galaxies, spanning over ∼5 dex in stellar mass and ∼3 dex in effective sur-
face brightness (e.g., Lelli et al. 2016; Iorio et al. 2017). The scientific implications of
these mass models have been recently reviewed in McGaugh et al. (2020) and Lelli
(2022). Here we only recall some basic facts. In high-mass (M	 > 3 × 109 M�) and
high-surface-brightness (HSB) galaxies, baryonic matter can generallyexplain the inner

https://doi.org/10.1017/S1743921323001643 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921323001643


342 F. Lelli

Figure 2. The Radial Acceleration Relation (RAR): the observed centripetal acceleration at
each radius is plotted against that expected from the baryons’ distribution. The left panel shows
the RAR from 153 disk galaxies from the SPARC database; blue and red dots correspond to data
from spirals and dIrrs, respectively. The right panel adds 62 dSphs in the LG; orange diamonds
and green circles show “classical” dSphs and ultra-faint dSphs. In both panels, the dotted line
is the line of unity; the solid line shows a fit to the SPARC data; dashed lines correspond to 1
standard deviation from the mean. Adapted from Lelli et al. (2017).

dynamics (R<∼ 1 − 2Rh) while the DM effect appears in the outer regions. In low-
mass (M	 ≤ 3 × 109 M�) and low-surface-brightness (LSB) galaxies, instead, the DM
effect is already important at small radii. In addition, the baryonic distribution and the
rotation-curve shapes appear tightly coupled in galaxies at a local level (Sancisi 2004).

The RAR (Fig. 2) is an effective way to quantify the local baryon-dynamics coupling in
galaxies (McGaugh et al. 2016; Lelli et al. 2017). At each radii, the observed acceleration
from rotation curves (gobs = V 2

rot/R) correlates with that expected from the distribution of
baryons (gbar = V 2

bar/R= −∇Φbar). At high accelerations, gobs = gbar so there is no need
of DM. At low accelerations, below a characteristic acceleration scale of ∼10−10 m s−2,
gobs > gbar and the DM effect emerges. Intriguingly, in the RAR plane, the outer DM-
dominated regions of spiral galaxies smoothly overlap with the inner DM-dominated
regions of dwarf irregulars (dIrrs) as if the two regions “know” about each other. The
observed scatter of the RAR is just ∼ 25% − 30%, so its intrinsic scatter must be tiny, if
not zero (Li et al. 2018; Desmond 2023).

Remarkably, the existence and properties of the RAR were predicted a-priori by
Milgrom (1983) using his Modified Newtonian Dynamics (MOND). It is thus impor-
tant to test whether different galaxy types follow the same RAR. Early-type galaxies
(ellipticals and lenticulars) lie on the same RAR of spirals and dIrrs (Lelli et al. 2017;
Shelest and Lelli 2020). The situation is more uncertain for dwarf spheroidal galaxies
(dSphs) in the LG. Given their low surface densities, dSphs are truly unique systems to
study the low RAR down to very low accelerations, but they lack a rotating gas disk, so
gobs must be inferred from stellar kinematics.

Lelli et al. (2017) compiled a sample of 62 dSphs with stellar velocity dispersion
σ	 from single-star spectroscopy. Assuming that dSphs are fully pressure-supported
and spherically symmetric, we can compute gobs = 3σ2

	/r1/2 and gbar =GNM	/(2r
2
1/2),
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where r1/2 is the 3D half-light radius. This choice is motivated by the fact that the mass-
anisotropy degeneracy in spherical, pressure-supported systems is nearly broken at r1/2
(Wolf et al. 2010). For dSphs, therefore, we have a single point per galaxy rather than
a spatially resolved analysis. Figure 2 (right panel) show that “classical” dSphs roughly
follow the same RAR as disk galaxies, whereas ultra-faint dwarfs (UFDs) display a much
larger scatter and are systematically shifted towards higher gobs than expected from the
RAR extrapolation. Several observational uncertainties may affect the location of UFDs
on the RAR: (1) M	 and r1/2 are not inferred from NIR surface photometry but from star
counts in optical images, after candidate stars are selected using color-magnitude dia-
grams and template isochrones, so there could be systematics between different datasets,
(2) σ	 may be inflated by undetected stellar binaries and/or small number statistics, espe-
cially when only a dozen of bright stars are available, and (3) both σ	 and r1/2 may be
inflated by tidal forces from the host galaxies (the Milky Way and Andromeda), possibly
driving the systems out of dynamical equilibrium. Major observational and theoretical
efforts are truly needed to clarify the location of UFDs on the RAR.

Discussion

Marina Rejkuba: What are the prospects to use the stellar Vrot in low surface
brightness outskirts? Maybe in resolved galaxies?

Federico Lelli: It is hard to study stellar kinematics beyond 1-2 Rh with existing
integral-field spectrographs due to the low surface brightness. Resolved individual-star
spectroscopy is currently limited to LG galaxies and require large spectrophotometric
campaigns. Future 40-meters telescopes, such as the ESO ELT, will surely push stellar
kinematics further. However, in addition to the observational challenges, there is a the-
oretical limitation. To infer the circular velocity tracing the gravitational field, we need
to correct the stellar Vrot for pressure support, which requires assumptions on the shape
of the velocity dispersion tensor.

Marina Rejkuba: You brought up uncertainties in Rh as possible explanation for the
scatter in the RAR for LG dwarfs. What did you use for Rh? In particular, for ultra-faint
dwarfs, this can indeed be uncertain as they may be out of equilibrium or affected by
the Milky Way.

Federico Lelli: We compiled Rh from various literature sources, then we calculated the
deprojected 3D half-light radius r1/2 that is needed to compute centripetal accelerations.
In addition to the technical challenges in measuring Rh in ultra-faint dwarfs, I fully agree
that out-of-equilibrium dynamics is a major concern because it could artificially increase
both Rh and the measured velocity dispersion σ	. As far as I can tell, the observed scatter
in the RAR may be entirely driven by observational uncertainties.

Yabin Yang: About the dSphs scattered distribution on the RAR, perhaps taking their
distances to be an extra parameter could help to understand their large dispersion?

Federico Lelli: We used the distances of dSphs from their host galaxies (Milky Way or
Andromeda) to compute the expected gravitational acceleration (ghost) and tidal accel-
eration (gtides) at their location. The scatter in the RAR decreases imposing a cut in
gobs/gtides, but there is no simple trend, nor obvious cut to use. The observed scatter
is probably driven by multiple effects and uncertainties, so considering a single quantity
does not tell the full story.
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Ting Li: What should the velocity dispersion be for the ultra-faint dwarfs if they follow
the same RAR as disk galaxies?

Federico Lelli: On average, the velocity dispersion of ultra-faint dwarfs should be a
factor of 2 smaller to have them on the low-acceleration extrapolation of the RAR of disk
galaxies.
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