Hostname: page-component-cb9f654ff-9b74x Total loading time: 0 Render date: 2025-08-17T08:09:05.678Z Has data issue: false hasContentIssue false

How do we design data sets for Machine Learning astronomy?

Published online by Cambridge University Press:  01 August 2025

Renée Hložek*
Affiliation:
Dunlap Institute for Astronomy & Astrophysics, 50 St. George Street, Toronto ON M5S 3H4 David A. Dunlap Department for Astronomy & Astrophysics, 50 St. George Street, Toronto ON M5S 3H4
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Many problems in astronomy and physics lend themselves to solutions from machine learning methods for the detection and classification of astronomical signals, and model inference from those signals. The historic presentation of machine learning methods as ‘black boxes’ has generated push back from some in the the physics/astronomy communities regarding how useful they are to truly uncover the physical laws that govern our world. Skepticism about the applicability of new computational methods in scientific inference is not new; we highlight connections between the machine learning contexts and previous computational paradigm shifts in astronomy. Moreover, several advances in methodologies challenge the assumption that machine learning ‘gives us answers that we can use but do not understand’ to standing physics questions. We summarize some astronomical machine learning data challenges used in astronomy and how we can use challenges on different scales to test different parts/use cases of our analysis methods.

Information

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abbott, B. P., et al. (2016). Tests of general relativity with GW150914. Phys. Rev. Lett., 116(22), 221101. ([Erratum: Phys.Rev.Lett. 121, 129902 (2018)]) doi: 10.1103/PhysRevLett.116.221101 Google ScholarPubMed
Abbott, T. C., Buffaz, E., Vieira, N., Cabero, M., Haggard, D., Mahabal, A., & McIver, J. (2022, March). GWSkyNet-Multi: A Machine-learning Multiclass Classifier for LIGO-Virgo Public Alerts. ApJ, 927(2), 232. doi: 10.3847/1538-4357/ac5019 Google Scholar
Abbott, T. M. C., Aguena, M., Alarcon, A., Allam, S., Alves, O., Amon, A., … DES, Collaboration (2022, January). Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D, 105(2), 023520. doi: 10.1103/PhysRevD.105.023520 CrossRefGoogle Scholar
Agarwal, D., Aggarwal, K., Burke-Spolaor, S., Lorimer, D. R., & Garver-Daniels, N. (2020, September). FETCH: A deep-learning based classifier for fast transient classification. MNRAS, 497(2), 16611674. doi: 10.1093/mnras/staa1856 Google Scholar
Alvarez-Lopez, S., Liyanage, A., Ding, J., Ng, R., & McIver, J. (2023, April). GSpyNet- Tree: A signal-vs-glitch classifier for gravitational-wave event candidates. arXiv e-prints, arXiv:2304.09977. doi: 10.48550/arXiv.2304.09977 Google Scholar
An, G. (2018, September). The crisis of reproducibility, the denominator problem and the scientific role of multi-scale modeling. Bull Math Biol, 80(12), 30713080.CrossRefGoogle ScholarPubMed
Andersson, A., Lintott, C., Fender, R., Bright, J., Carotenuto, F., Driessen, L., … Whittle, I. (2023, April). Bursts from Space: MeerKAT - The first citizen science project dedicated to commensal radio transients. arXiv e-prints, arXiv:2304.14157. doi: 10.48550/arXiv.2304.14157 Google Scholar
Babak, S., Baker, J. G., Benacquista, M. J., Cornish, N. J., Crowder, J., Cutler, C., … Challenge-2 participants, t. (2008, June). Report on the second Mock LISA data challenge. Classical and Quantum Gravity, 25(11), 114037. doi: 10.1088/0264-9381/25/11/114037 CrossRefGoogle Scholar
Baghi, Q. (2022, April). The LISA Data Challenges. arXiv e-prints, arXiv:2204.12142. doi: 10.48550/arXiv.2204.12142 Google Scholar
Baron, D. (2019, April). Machine Learning in Astronomy: a practical overview. arXiv e-prints, arXiv:1904.07248. doi: 10.48550/arXiv.1904.07248 Google Scholar
Bianco, F. B., Ivezić, Ž., Jones, R. L., Graham, M. L., Marshall, P., Saha, A., … Willman, B. (2022, January). Optimization of the Observing Cadence for the Rubin Observatory Legacy Survey of Space and Time: A Pioneering Process of Community-focused Experimental Design. ApJS, 258(1), 1. doi: 10.3847/1538-4365/ac3e72 CrossRefGoogle Scholar
Bini, S., Vedovato, G., Drago, M., Salemi, F., & Prodi, G. A. (2023, March). An autoencoder neural network integrated into gravitational-wave burst searches to improve the rejection of noise transients. arXiv e-prints, arXiv:2303.05986. doi: 10.48550/arXiv.2303.05986 Google Scholar
Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015, May). Weight Uncertainty in Neural Networks. arXiv e-prints, arXiv:1505.05424. doi: 10.48550/arXiv.1505.05424 Google Scholar
Bonavera, L., Suarez Gomez, S. L., González-Nuevo, J., Cueli, M. M., Santos, J. D., Sanchez, M. L., … de Cos, F. J. (2021, April). Point source detection with fully convolutional networks. Performance in realistic microwave sky simulations. A&A, 648, A50. doi: 10.1051/0004-6361/201937171 CrossRefGoogle Scholar
Boroson, T. A., & Green, R. F. (1992, May). The Emission-Line Properties of Low-Redshift Quasi-stellar Objects. ApJS, 80, 109. doi: 10.1086/191661 CrossRefGoogle Scholar
Boscoe, B., Do, T., Jones, E., Li, Y., Alfaro, K., & Ma, C. (2022, November). Elements of effective machine learning datasets in astronomy. arXiv e-prints, arXiv:2211.14401. doi: 10.48550/arXiv.2211.14401 Google Scholar
Boulahia, S. Y., Amamra, A., Madi, M. R., & Daikh, S. (2021, nov). Early, intermediate and late fusion strategies for robust deep learning-based multimodal action recognition. Mach. Vision Appl., 32(6). doi: 10.1007/s00138-021-01249-8 CrossRefGoogle Scholar
Buntine, W. L., & Weigend, A. S. (1991). Bayesian back-propagation. Complex Syst., 5.Google Scholar
Cabero, M., Mahabal, A., & McIver, J. (2020, November). GWSkyNet: A Real-time Classifier for Public Gravitational-wave Candidates. ApJ, 904(1), L9. doi: 10.3847/2041-8213/abc5b5 CrossRefGoogle Scholar
Caldeira, J., & Nord, B. (2020, April). Deeply Uncertain: Comparing Methods of Uncertainty Quantification in Deep Learning Algorithms. arXiv e-prints, arXiv:2004.10710. doi: 10.48550/arXiv.2004.10710 Google Scholar
Cardamone, C., Schawinski, K., Sarzi, M., Bamford, S. P., Bennert, N., Urry, C. M., … Vandenberg, J. (2009, November). Galaxy Zoo Green Peas: discovery of a class of compact extremely star- forming galaxies. MNRAS, 399, 11911205. doi: 10.1111/j.1365-2966.2009.15383.x Google Scholar
CHIME/FRB Collaboration, Amiri, M., Andersen, B. C., Bandura, K., Berger, S., Bhardwaj, M., … Zwaniga, A. V. (2021, December). The First CHIME/FRB Fast Radio Burst Catalog. ApJS, 257(2), 59. doi: 10.3847/1538-4365/ac33ab Google Scholar
Ćiprijanović, A., Kafkes, D., Snyder, G., Sánchez, F. J., Perdue, G. N., Pedro, K., … Wild, S. M. (2022, September). DeepAdversaries: examining the robustness of deep learning models for galaxy morphology classification. Machine Learning: Science and Technology, 3(3), 035007. doi: 10.1088/2632-2153/ac7f1a CrossRefGoogle Scholar
Cireşan, D., Meier, U., & Schmidhuber, J. (2012, February). Multi-column Deep Neural Networks for Image Classification. arXiv e-prints, arXiv:1202.2745. doi: 10.48550/arXiv.1202.2745 CrossRefGoogle Scholar
Connolly, A. J., Szalay, A. S., Bershady, M. A., Kinney, A. L., & Calzetti, D. (1995, September). Spectral Classification of Galaxies: an Orthogonal Approach. AJ, 110, 1071. doi: 10.1086/117587 CrossRefGoogle Scholar
Connor, L., Ravi, V., Catha, M., Chen, G., Faber, J. T., Lamb, J. W., … Yadlapalli, N. (2023, February). Deep Synoptic Array science: Two fast radio burst sources in massive galaxy clusters. arXiv e-prints, arXiv:2302.14788. doi: 10.48550/arXiv.2302.14788 Google Scholar
Connor, L., & van Leeuwen, J. (2018, December). Applying Deep Learning to Fast Radio Burst Classification. AJ, 156(6), 256. doi: 10.3847/1538-3881/aae649 CrossRefGoogle Scholar
Dai, Z., Moews, B., Vilalta, R., & Dave, R. (2023, March). Physics-informed neural networks in the recreation of hydrodynamic simulations from dark matter. arXiv e-prints, arXiv:2303.14090. doi: 10.48550/arXiv.2303.14090 Google Scholar
DeLaunay, J., & Tohuvavohu, A. (2022, December). Harvesting BAT-GUANO with NITRATES (Non-Imaging Transient Reconstruction and Temporal Search): Detecting and Localizing the Faintest Gamma-Ray Bursts with a Likelihood Framework. ApJ, 941(2), 169. doi: 10.3847/1538-4357/ac9d38 CrossRefGoogle Scholar
Denker, J. S., & LeCun, Y. (1990). Transforming neural-net output levels to probability distributions. In Advances in neural information processing systems 3 (p. 853–859). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.Google Scholar
Djorgovski, S. G., Baltay, C., Mahabal, A. A., Drake, A. J., Williams, R., Rabinowitz, D., … Ellman, N. (2008, March). The Palomar-Quest digital synoptic sky survey. Astronomische Nachrichten, 329(3), 263. doi: 10.1002/asna.200710948 CrossRefGoogle Scholar
Drake, A. J., Djorgovski, S. G., Mahabal, A., Prieto, J. L., Beshore, E., Graham, M. J., … Williams, R. (2012, April). The Catalina Real-time Transient Survey. In Griffin, E., Hanisch, R., & Seaman, R. (Eds.), New horizons in time domain astronomy (Vol. 285, p. 306–308). doi: 10.1017/S1743921312000889 CrossRefGoogle Scholar
Dumusque, X. (2016, Aug). Radial velocity fitting challenge. I. Simulating the data set including realistic stellar radial-velocity signals. A&A, 593, A5. doi: 10.1051/0004-6361/201628672 CrossRefGoogle Scholar
Dumusque, X., Borsa, F., Damasso, M., Díaz, R. F., Gregory, P. C., Hara, N. C., … Udry, S. (2017, February). Radial-velocity fitting challenge. II. First results of the analysis of the data set. A&A, 598, A133. doi: 10.1051/0004-6361/201628671 CrossRefGoogle Scholar
Dunn, M., Ćiprijanović, A., Nord, B., & Mobasher, B. (2023, January). Galaxy Morphology Classification Using Bayesian Neural Networks for LSST. In American astronomical society meeting abstracts (Vol. 55, p. 105.13).CrossRefGoogle Scholar
Dvorkin, C., Mishra-Sharma, S., Nord, B., Villar, V. A., Avestruz, C., Bechtol, K., … Villaescusa-Navarro, F. (2022, March). Machine Learning and Cosmology. arXiv e-prints, arXiv:2203.08056. doi: 10.48550/arXiv.2203.08056 Google Scholar
Errington, T. M., Denis, A., Perfito, N., Iorns, E., & Nosek, B. A. (2021, dec). Reproducibility in cancer biology: Challenges for assessing replicability in preclinical cancer biology. eLife, 10, e67995. Retrieved from https://doi.org/10.7554/eLife.67995doi:10.7554/eLife.67995 CrossRefGoogle Scholar
Fukushima, K. (1980). Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern, 36(4), 193202.CrossRefGoogle ScholarPubMed
George, D., & Huerta, E. (2018a). Deep learning for real-time gravitational wave detection and parameter estimation: Results with advanced ligo data. Physics Letters B, 778, 6470. Retrieved from https://www.sciencedirect.com/science/article/pii/S0370269317310390 doi: https://doi.org/10.1016/j.physletb.2017.12.053 CrossRefGoogle Scholar
George, D., & Huerta, E. A. (2018b, Feb). Deep neural networks to enable real-time multimes- senger astrophysics. Phys. Rev. D, 97, 044039. Retrieved from https://link.aps.org/doi/10.1103/PhysRevD.97.044039 doi: 10.1103/PhysRevD.97.044039 Google Scholar
Giorgi, G. M., & Gigliarano, C. (2017). The gini concentration index: A review of the inference literature. Journal of Economic Surveys, 31(4), 11301148. doi: https://doi.org/10.1111/joes.12185 CrossRefGoogle Scholar
Graham, M. J., Djorgovski, S. G., Mahabal, A., Donalek, C., Drake, A., & Longo, G. (2012, August). Data challenges of time domain astronomy. arXiv e-prints, arXiv:1208.2480. doi: 10.48550/arXiv.1208.2480 Google Scholar
Grojean, C., Paul, A., Qian, Z., & Strümke, I. (2022, March). Interpretable machine learning in Physics. arXiv e-prints, arXiv:2203.08021. doi: 10.48550/arXiv.2203.08021 Google Scholar
Hartley, P., Bonaldi, A., Braun, R., Aditya, J. N. H. S., Aicardi, S., Alegre, L., … Zuo, S. (2023, March). SKA Science Data Challenge 2: analysis and results. arXiv e-prints, arXiv:2303.07943. doi: 10.48550/arXiv.2303.07943 Google Scholar
Hillar, C., & Sommer, F. (2012, October). Comment on the article “Distilling free-form natural laws from experimental data”. arXiv e-prints, arXiv:1210.7273. doi: 10.48550/arXiv.1210.7273 Google Scholar
Hložek, R., Ponder, K. A., Malz, A. I., Dai, M., Narayan, G., Ishida, E. E. O., … Setzer, C. N. (2020, December). Results of the Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC). arXiv e-prints, arXiv:2012.12392. doi: 10.48550/arXiv.2012.12392 Google Scholar
Ho, J., Jain, A., & Abbeel, P. (2020, June). Denoising Diffusion Probabilistic Models. arXiv e-prints, arXiv:2006.11239. doi: 10.48550/arXiv.2006.11239 Google Scholar
Hopkins, A. M., Whiting, M. T., Seymour, N., Chow, K. E., Norris, R. P., Bonavera, L., … van der Horst, A. J. (2015, October). The ASKAP/EMU Source Finding Data Challenge. Publ. Astron. Soc. Australia, 32, e037. doi: 10.1017/pasa.2015.37 CrossRefGoogle Scholar
Iyer, K. G., Speagle, J. S., Caplar, N., Forbes, J. C., Gawiser, E., Leja, J., & Tacchella, S. (2022, August). Stochastic Modelling of Star Formation Histories III. Constraints from Physically-Motivated Gaussian Processes. arXiv e-prints, arXiv:2208.05938. doi: 10.48550/arXiv.2208.05938 Google Scholar
Jimenez, M., Alfaro, E. J., Torres Torres, M., & Triguero, I. (2023, February). CzSL: Learning from citizen science, experts and unlabelled data in astronomical image classification. arXiv e-prints, arXiv:2302.00366. doi: 10.48550/arXiv.2302.00366 Google Scholar
Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021, January). Physics-informed machine learning. Nature Reviews Physics, 3(6), 422440. doi: 10.1038/s42254-021-00314-5 CrossRefGoogle Scholar
Karpov, P. I., Huang, C., Sitdikov, I., Fryer, C. L., Woosley, S., & Pilania, G. (2022, November). Physics-informed Machine Learning for Modeling Turbulence in Supernovae. ApJ, 940(1), 26. doi: 10.3847/1538-4357/ac88cc CrossRefGoogle Scholar
Kessler, R., Bassett, B., Belov, P., Bhatnagar, V., Campbell, H., Conley, A., … Varughese, M. (2010, December). Results from the Supernova Photometric Classification Challenge. Publications of the Astronomical Society of the Pacific, 122, 1415. doi: 10.1086/657607 CrossRefGoogle Scholar
Kessler, R., Becker, A. C., Cinabro, D., Vanderplas, J., Frieman, J. A., Marriner, J., … York, D. (2009, November). First-Year Sloan Digital Sky Survey-II Supernova Results: Hubble Diagram and Cosmological Parameters. ApJS, 185(1), 3284. doi: 10.1088/0067-0049/185/1/32 CrossRefGoogle Scholar
Kessler, R., Narayan, G., Avelino, A., Bachelet, E., Biswas, R., Brown, P. J., … Transient and Variable Stars Science Collaboration (2019, Sep). Models and Simulations for the Photo- metric LSST Astronomical Time Series Classification Challenge (PLAsTiCC). Publications of the Astronomical Society of the Pacific, 131 (1003), 094501. doi: 10.1088/1538-3873/ab26f1 CrossRefGoogle Scholar
Kitching, T., Balan, S., Bernstein, G., Bethge, M., Bridle, S., Courbin, F., … Voigt, L. (2010, September). Gravitational Lensing Accuracy Testing 2010 (GREAT10) Challenge Handbook. arXiv e-prints, arXiv:1009.0779. doi: 10.48550/arXiv.1009.0779 CrossRefGoogle Scholar
Klingner, C. M., Denker, M., Grün, S., Hanke, M., Oeltze-Jafra, S., Ohl, F. W., … Ritter, P. (2022). Overcoming the reproducibility crisis - results of the first community survey of the german national research data infrastructure for neuroscience. bioRxiv. doi: 10.1101/2022.04.07.487439 Google Scholar
Kruk, S., & Merín, B. (2023, April). Citizen Science with ESA Science Data - The Hubble Asteroid Hunter project. Europhysics News, 54(2), 2831. doi: 10.1051/epn/2023206 CrossRefGoogle Scholar
Lecar, M. (1968). Bulletin astronomique de l‘observatoire de paris. In (Vol. 3). Centre National de la Research Scientifique.Google Scholar
Levrier, F., Wilman, R. J., Obreschkow, D., Kloeckner, H. R., Heywood, I. H., & Rawlings, S. (2009, January). Mapping the SKA Simulated Skies with the S3-Tools. In Wide field astronomy & technology for the square kilometre array (p. 5). doi: 10.22323/1.132.0005 CrossRefGoogle Scholar
Lewis, A., Voetberg, M., Nord, B., Jones, C., Hložek, R., Ciprijanovic, A., & Perdue, G. N. (2022, July). DeepBench: A library for simulating benchmark datasets for scientific analysis. In Machine learning for astrophysics (p. 32).Google Scholar
Lin, H.-H., Lin, K.-y., Li, C.-T., Tseng, Y.-H., Jiang, H., Wang, J.-H., … Zhu, H.-M. (2022, September). BURSTT: Bustling Universe Radio Survey Telescope in Taiwan. PASP, 134(1039), 094106. doi: 10.1088/1538-3873/ac8f71 CrossRefGoogle Scholar
Lintott, C. J., Schawinski, K., Slosar, A., Land, K., Bamford, S., Thomas, D., … Vandenberg, J. (2008, September). Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey. MNRAS, 389(3), 11791189. doi: 10.1111/j.1365-2966.2008.13689.x CrossRefGoogle Scholar
Lokken, M., Gagliano, A., Narayan, G., Hložek, R., Kessler, R., Crenshaw, J. F., … LSST Dark Energy Science Collaboration (2023, April). The simulated catalogue of optical transients and correlated hosts (SCOTCH). MNRAS, 520(2), 28872912. doi: 10.1093/mnras/stad302 CrossRefGoogle Scholar
Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J., & Crawford, F. (2007, November). A Bright Millisecond Radio Burst of Extragalactic Origin. Science, 318(5851), 777. doi: 10.1126/science.1147532 CrossRefGoogle ScholarPubMed
LSST Dark Energy Science Collaboration. (2012, November). Large Synoptic Survey Telescope: Dark Energy Science Collaboration. arXiv e-prints, arXiv:1211.0310. doi: 10.48550/arXiv.1211.0310 Google Scholar
LSST Dark Energy Science Collaboration (LSST DESC), Abolfathi, B., Alonso, D., Armstrong, R., Aubourg, É., Awan, H., … Zuntz, J. (2021, March). The LSST DESC DC2 Simulated Sky Survey. ApJS, 253(1), 31. doi: 10.3847/1538-4365/abd62c CrossRefGoogle Scholar
Science Collaboration, LSST, Abell, P. A., Allison, J., Anderson, S. F., Andrew, J. R., Angel, J. R. P., … Zhan, H. (2009, December). LSST Science Book, Version 2.0. arXiv e-prints, arXiv:0912.0201. doi: 10.48550/arXiv.0912.0201 CrossRefGoogle Scholar
Lucie-Smith, L., Peiris, H. V., & Pontzen, A. (2023, May). Explaining dark matter halo density profiles with neural networks. arXiv e-prints, arXiv:2305.03077.Google Scholar
MacKay, D. J. C. (1992, 05). A Practical Bayesian Framework for Backpropagation Networks. Neural Computation, 4(3), 448472. doi: 10.1162/neco.1992.4.3.448 CrossRefGoogle Scholar
Malz, A., Hložek, R., Allam, J., Tarek, Bahmanyar, A., Biswas, R., Dai, M., … Variable Stars Science Collaboration (2018, September). The Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC): Selection of a performance metric for classification probabilities balancing diverse science goals. ArXiv e-prints, arXiv:1809.11145.CrossRefGoogle Scholar
Mandelbaum, R., Rowe, B., Bosch, J., Chang, C., Courbin, F., Gill, M., … Schrabback, T. (2014, May). The Third Gravitational Lensing Accuracy Testing (GREAT3) Challenge Handbook. The Astrophysical Journal Supplement Series, 212, 5. doi: 10.1088/0067-0049/212/1/5 CrossRefGoogle Scholar
Megias Homar, G., Meyers, J. E., & Kahn, S. M. (2023, March). Prompt Detection of Fast Optical Bursts with the Vera C. Rubin Observatory. arXiv e-prints, arXiv:2303.02525. doi: 10.48550/arXiv.2303.02525 CrossRefGoogle Scholar
Metcalf, R. B., Meneghetti, M., Avestruz, C., Bellagamba, F., Bom, C. R., Bertin, E., … Vernardos, G. (2018, February). The Strong Gravitational Lens Finding Challenge. ArXiv e-prints, arXiv:1802.03609.CrossRefGoogle Scholar
Miller, R. H. (1964, July). Irreversibility in Small Stellar Dynamical Systems. ApJ, 140, 250. doi: 10.1086/147911 CrossRefGoogle Scholar
Miller, R. H. (1971, January). Experimental studies of the numerical stability of the gravitational n-body problem. Journal of Computational Physics, 8, 449464. doi: 10.1016/0021-9991(71)90023-4 CrossRefGoogle Scholar
Modi, C., Lanusse, F., Seljak, U., Spergel, D. N., & Perreault-Levasseur, L. (2021, April). CosmicRIM: Reconstructing Early Universe by Combining Differentiable Simulations with Recurrent Inference Machines. arXiv e-prints, arXiv:2104.12864. doi: 10.48550/arXiv.2104.12864 Google Scholar
Mohan, D., Scaife, A. M. M., Porter, F., Walmsley, M., & Bowles, M. (2022, April). Quantifying uncertainty in deep learning approaches to radio galaxy classification. MNRAS, 511(3), 37223740. doi: 10.1093/mnras/stac223 CrossRefGoogle Scholar
Narayan, G., & ELAsTiCC Team. (2023, January). The Extended LSST Astronomical Time-series Classification Challenge (ELAsTiCC). In American astronomical society meeting abstracts (Vol. 55, p. 117.01).Google Scholar
Nord, B., Connolly, A. J., Kinney, J., Kubica, J., Narayan, G., Peek, J. E. G., … Tollerud, E. J. (2019, September). Algorithms and Statistical Models for Scientific Discovery in the Petabyte Era. In Bulletin of the american astronomical society (Vol. 51, p. 224). doi: 10.48550/arXiv.1911.02479 Google Scholar
Ntampaka, M., Ho, M., & Nord, B. (2021, November). Building Trustworthy Machine Learning Models for Astronomy. arXiv e-prints, arXiv:2111.14566. doi: 10.48550/arXiv.2111.14566 Google Scholar
Ntampaka, M., & Vikhlinin, A. (2022, February). The Importance of Being Interpretable: Toward an Understandable Machine Learning Encoder for Galaxy Cluster Cosmology. ApJ, 926(1), 45. doi: 10.3847/1538-4357/ac423e Google Scholar
Peek, J., & White, R. (2021, June). Search By Image: Citizen Science and Deep Learning for next-generation archives. In American astronomical society meeting abstracts (Vol. 53, p. 301.06).Google Scholar
Piras, D., Peiris, H. V., Pontzen, A., Lucie-Smith, L., Guo, N., & Nord, B. (2023, June). A robust estimator of mutual information for deep learning interpretability. Machine Learning: Science and Technology, 4(2), 025006. doi: 10.1088/2632-2153/acc444 Google Scholar
Psaros, A. F., Meng, X., Zou, Z., Guo, L., & Karniadakis, G. E. (2023, March). Uncertainty quantification in scientific machine learning: Methods, metrics, and comparisons. Journal of Computational Physics, 477, 111902. doi: 10.1016/j.jcp.2022.111902 CrossRefGoogle Scholar
Quinlan, G. D., & Tremaine, S. (1992, December). On the reliability of gravitational N-body integrations. MNRAS, 259(3), 505518. doi: 10.1093/mnras/259.3.505 Google Scholar
Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019, February). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686–707. doi: 10.1016/j.jcp.2018.10.045 CrossRefGoogle Scholar
Ramírez-Pérez, C., Sanchez, J., Alonso, D., & Font-Ribera, A. (2022, May). CoLoRe: fast cosmological realisations over large volumes with multiple tracers. J. Cosmology Astropart. Phys., 2022(5), 002. doi: 10.1088/1475-7516/2022/05/002 Google Scholar
Razzano, M., Di Renzo, F., Fidecaro, F., Hemming, G., & Katsanevas, S. (2023, March). GWitchHunters: Machine learning and citizen science to improve the performance of gravitational wave detector. Nuclear Instruments and Methods in Physics Research A, 1048, 167959. doi: 10.1016/j.nima.2022.167959 CrossRefGoogle Scholar
Reza, M., Zhang, Y., Nord, B., Poh, J., Ciprijanovic, A., & Strigari, L. (2022, July). Estimating Cosmological Constraints from Galaxy Cluster Abundance using Simulation-Based Inference. In Machine learning for astrophysics (p. 20). doi: 10.48550/arXiv.2208.00134 CrossRefGoogle Scholar
Ricker, G. R., Winn, J. N., Vanderspek, R., Latham, D. W., Bakos, G. Á., Bean, J. L., … Villasenor, J. (2014, Aug). Transiting Exoplanet Survey Satellite (TESS). In Space telescopes and instrumentation 2014: Optical, infrared, and millimeter wave (Vol. 9143, p. 914320). doi: 10.1117/12.2063489 CrossRefGoogle Scholar
Riggi, S., Vitello, F., Becciani, U., Buemi, C., Bufano, F., Calanducci, A., … Umana, G. (2019, October). Cuc(aesar) source finder: Recent developments and testing. Publ. Astron. Soc. Australia, 36, e037. doi: 10.1017/pasa.2019.29 CrossRefGoogle Scholar
Rosofsky, S. G., Al Majed, H., & Huerta, E. A. (2022, March). Applications of physics informed neural operators. arXiv e-prints, arXiv:2203.12634. doi: 10.48550/arXiv.2203.12634 Google Scholar
Rudin, C. (2018, November). Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead. arXiv e-prints, arXiv:1811.10154. doi: 10.48550/arXiv.1811.10154 Google Scholar
Sako, M., Bassett, B., Becker, A. C., Brown, P. J., Campbell, H., Wolf, R., … Zheng, C. (2018, June). The Data Release of the Sloan Digital Sky Survey-II Supernova Survey. PASP, 130(988), 064002. doi: 10.1088/1538-3873/aab4e0 CrossRefGoogle Scholar
Schmidt, M., & Lipson, H. (2009). Distilling free-form natural laws from experimental data. Science, 324(5923), 8185. doi: 10.1126/science.1165893 CrossRefGoogle ScholarPubMed
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2016, October). Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. arXiv e-prints, arXiv:1610.02391. doi: 10.48550/arXiv.1610.02391 Google Scholar
Shukla, K., Xu, M., Trask, N., & Karniadakis, G. E. (2022, May). Scalable algorithms for physics-informed neural and graph networks. arXiv e-prints, arXiv:2205.08332. doi: 10.48550/arXiv.2205.08332 Google Scholar
Siemiginowska, A., Eadie, G., Czekala, I., Feigelson, E., Ford, E. B., Kashyap, V., … Young, C. A. (2019, May). The Next Decade of Astroinformatics and Astrostatistics. BAAS, 51(3), 355. doi: 10.48550/arXiv.1903.06796 Google Scholar
Square Kilometre Array Cosmology Science Working Group, Bacon, D. J., Battye, R. A., Bull, P., Camera, S., Ferreira, P. G., … Zuntz, J. (2020, March). Cosmology with Phase 1 of the Square Kilometre Array Red Book 2018: Technical specifications and performance forecasts. Publ. Astron. Soc. Australia, 37, e007. doi: 10.1017/pasa.2019.51 CrossRefGoogle Scholar
Stein, G., Seljak, U., Böhm, V., Aldering, G., Antilogus, P., Aragon, C., … Nearby Supernova Factory (2022, August). A Probabilistic Autoencoder for Type Ia Supernova Spectral Time Series. ApJ, 935(1), 5. doi: 10.3847/1538-4357/ac7c08 CrossRefGoogle Scholar
Sullivan, J. M., Prijon, T., & Seljak, U. (2023, March). Learning to Concentrate: Multi-tracer Forecasts on Local Primordial Non-Gaussianity with Machine-Learned Bias. arXiv e-prints, arXiv:2303.08901. doi: 10.48550/arXiv.2303.08901 Google Scholar
The CHIME/FRB Collaboration, Andersen, B. C., Bandura, K., Bhardwaj, M., Boyle, P. J., … Zwaniga, A. (2023, January). CHIME/FRB Discovery of 25 Repeating Fast Radio Burst Sources. arXiv e-prints, arXiv:2301.08762. doi: 10.48550/arXiv.2301.08762 CrossRefGoogle Scholar
Tohuvavohu, A., Kennea, J. A., DeLaunay, J., Palmer, D. M., Cenko, S. B., & Barthelmy, S. (2020, September). Gamma-Ray Urgent Archiver for Novel Opportunities (GUANO): Swift/BAT Event Data Dumps on Demand to Enable Sensitive Subthreshold GRB Searches. ApJ, 900(1), 35. doi: 10.3847/1538-4357/aba94f CrossRefGoogle Scholar
Tulio Ribeiro, M., Singh, S., & Guestrin, C. (2016, February). “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. arXiv e-prints, arXiv:1602.04938. doi: 10.48550/arXiv.1602.04938 Google Scholar
Vafaei Sadr, A., Vos, E. E., Bassett, B. A., Hosenie, Z., Oozeer, N., & Lochner, M. (2019, April). DEEPSOURCE: point source detection using deep learning. MNRAS, 484(2), 27932806. doi: 10.1093/mnras/stz131 CrossRefGoogle Scholar
van Leeuwen, J., Kooistra, E., Oostrum, L., Connor, L., Hargreaves, J. E., Maan, Y., … Ziemke, J. (2023, April). The Apertif Radio Transient System (ARTS): Design, commissioning, data release, and detection of the first five fast radio bursts. A&A, 672, A117. doi: 10.1051/0004-6361/202244107 Google Scholar
van Roestel, J., Duev, D. A., Mahabal, A. A., Coughlin, M. W., Mróz, P., Burdge, K., … Kulkarni, S. R. (2021, June). The ZTF Source Classification Project. I. Methods and Infrastructure. AJ, 161(6), 267. doi: 10.3847/1538-3881/abe853 CrossRefGoogle Scholar
Vanderlinde, K., Liu, A., Gaensler, B., Bond, D., Hinshaw, G., Ng, C., … Kaspi, V. (2019, October). The Canadian Hydrogen Observatory and Radio-transient Detector (CHORD). In Canadian long range plan for astronomy and astrophysics white papers (Vol. 2020, p. 28). doi: 10.5281/zenodo.3765414 CrossRefGoogle Scholar
Walmsley, M., Smith, L., Lintott, C., Gal, Y., Bamford, S., Dickinson, H., … Wright, D. (2019, 10). Galaxy Zoo: probabilistic morphology through Bayesian CNNs and active learning. Monthly Notices of the Royal Astronomical Society, 491(2), 15541574. Retrieved from https://doi.org/10.1093/mnras/stz2816doi:10.1093/mnras/stz2816 Google Scholar
Wang, Y.-T., Liu, H.-Y., & Piao, Y.-S. (2023, February). Self-supervised learning for gravitational wave signal identification. arXiv e-prints, arXiv:2302.00295. doi: 10.48550/arXiv.2302.00295 Google Scholar
Yong, S. Y., Hobbs, G., Huynh, M. T., Rolland, V., Petersson, L., Norris, R. P., … Zic, A. (2022, November). SPARKESX: Single-dish PARKES data sets for finding the uneXpected - a data challenge. MNRAS, 516(4), 58325848. doi: 10.1093/mnras/stac2558 Google Scholar
Yu, W., Richards, G., Buat, V., Brandt, W. N., Banerji, M., Ni, Q., … Yang, J. (2022, July). Lsstc agn data challenge 2021. Zenodo. Retrieved from https://doi.org/10.5281/zenodo.6878414doi:10.5281/zenodo.6878414 Google Scholar
Zhang, C., Wang, C., Hobbs, G., Russell, C. J., Li, D., Zhang, S. B., … Ren, Z. Y. (2020, October). Applying saliency-map analysis in searches for pulsars and fast radio bursts. A&A, 642, A26. doi: 10.1051/0004-6361/201937234 Google Scholar
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2015, December). Learning Deep Features for Discriminative Localization. arXiv e-prints, arXiv:1512.04150. doi: 10.48550/arXiv.1512.04150 Google Scholar
Zhu-Ge, J.-M., Luo, J.-W., & Zhang, B. (2023, February). Machine learning classification of CHIME fast radio bursts - II. Unsupervised methods. MNRAS, 519(2), 1823–1836. doi: 10.1093/mnras/stac3599 CrossRefGoogle Scholar
Zuntz, J., Lanusse, F., Malz, A. I., Wright, A. H., Slosar, A., Abolfathi, B., … LSST Dark Energy Science Collaboration (2021, October). The LSST-DESC 3x2pt Tomography Optimization Challenge. The Open Journal of Astrophysics, 4(1), 13. doi: 10.21105/astro.2108.13418 Google Scholar