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Abstract. Many problems in astronomy and physics lend themselves to solutions from machine
learning methods for the detection and classification of astronomical signals, and model infer-
ence from those signals. The historic presentation of machine learning methods as ‘black boxes’
has generated push back from some in the the physics/astronomy communities regarding how
useful they are to truly uncover the physical laws that govern our world. Skepticism about the
applicability of new computational methods in scientific inference is not new; we highlight con-
nections between the machine learning contexts and previous computational paradigm shifts in
astronomy. Moreover, several advances in methodologies challenge the assumption that machine
learning ‘gives us answers that we can use but do not understand’ to standing physics questions.
We summarize some astronomical machine learning data challenges used in astronomy and how
we can use challenges on different scales to test different parts/use cases of our analysis methods.
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1. Introduction

We are firmly in the artificial intelligence/machine-learning (AI/ML) assisted age. As
the volume of data in astronomy increases to the ‘petabyte age’, astronomers are con-
stantly looking for methods to process raw data to compressed science-ready products
and discard data that are not useful for astronomical inference. Advances in the com-
plexity and robustness of machine learning methods have been equally matched with an
increase in their use in astronomy and physics contexts.

1.1. Computational advances lead to both innovation and skepticism

Machine learning is currently a widely used tool in astronomical research, with
advances in algorithm development and methodology driving rapid breakthroughs in
previously intractable problems. As breathtaking as this current paradigm is, it mirrors
a similar ‘revolution’ in astronomy: that of simulating large gravitational systems in the
late 1960s and 1970s. Advances in computing led to an explosion of the so-called ‘N-body’
simulations of gravitation. As shown in Figure 1, following their initial use, publications
using the phrase ‘N-body’ increased dramatically following the similar increase in com-
putational power. It is sometimes taken for granted that N-body simulations are an
excellent way to study the dynamics of gravitational systems, however when they were
first developed there was real skepticism of the validity of the methods and the divergence
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Figure 1. The number of refereed publications mentioning artificial intelligence/machine learn-
ing (pink) compared to those mentioning N-body methods (purple) as a function of time returned
by the NASA Astrophysics Data System online at NASA ADS. The AI/ML revolution can be
seen as the rapid growth in the number of publications as a function of time.

between groups following different prescriptions. Similarly, simulations diverged rapidly
even with tiny changes in the initial conditions, as noted in early studies Miller (1964,
1971).

In a meeting to discuss these new methods, M. Lecar issued a word of caution and
suggested the need for further comparative studies, given the one attempted for the 1968
meeting of researchers in dynamics:

It seems that numerical experiments are becoming increasingly popular, and before
things get out of hand, I feel that further tests of reproducibility are imperative. However,
because of the difficulties in handling volumes of data from different computers, it would
be worthwhile for each of us first to initiate statistical studies of our own; varying the
accuracy and the microscopic initial conditions, and searching for stable quantities. These
results should be sent to all the participants in this study, and perhaps by next summer,
we can hold a second comparison study. Lecar (1968)

As summarized in Quinlan & Tremaine (1992), this sensitivity of N-body simulations
to small errors was not simply a numerical artifact that would dissolve with additional
computational power, and so the community had to establish (and compare) best prac-
tices for how to regularize the integration methods in these systems. The community did
not, however, abandon the N-body methods due to these potential pitfalls. Comparisons
across groups on ‘standard systems’, clear descriptions of methods and exploration of the
impacts of methodological assumptions has led to the continued success of this technique
in astronomy for systems across a range of scales.
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1.2. What is machine learning in astronomy used for?

Machine learning methods in astronomy have been used since the mid-late 1990s
(see Baron 2019, for an excellent comparison of different algorithms and their appli-
cation in astronomy), with early methods focusing on spectral analysis (Connolly et al.
1995; Boroson & Green 1992) and principal component analysis slowly replaced with
more recent use cases including deep learning, neural networks and diffusion methods
(Cireşan et al. 2012; Fukushima 1980; Ho et al. 2020; Ćiprijanović et al. 2022). The use
cases in astronomy can be summarized in roughly three categories, namely the detection
of signals in a faint and often varying background; the clustering/classification of objects
into various categories through either unsupervised (clustering) or supervised (classifi-
cation) methods; and statistical inference of certain parameters or models allowed by a
given data set.

1.2.1. Signal detection

Astronomical signals can vary from the ‘extremely bright/loud’ bursts of radiation to
faint hints of signal within a bright background. Examples of bright objects include Fast
Radio Bursts (FRBs), which exhibit a characteristic ‘sweep’ in frequency-time space
as the signal passes through the electrons along the line of sight. First detected in
2007 (Lorimer et al. 2007), fast radio bursts are exciting new objects in the sky that
display brighten and fade rapidly in radio bands (ranging from milliseconds to a few
seconds in duration). Some objects repeat this brightening/fading, while others appear
to brighten only once (The CHIME/FRB Collaboration et al. 2023). Several surveys
are optimized to find many of these new objects in the hopes of uncovering their origin
and the physical mechanism behind the bursts (CHIME/FRB Collaboration et al. 2021;
Connor et al. 2023; Vanderlinde et al. 2019; Lin et al. 2022; van Leeuwen et al. 2023;
Megias Homar et al. 2023). The gravitational wave signatures of the in-fall of pairs of
massive bodies like black holes and neutron stars also have a characteristic shape, but are
a much fainter signal relative to background effects. First detected in 2015 (Abbott et al.
2016), these signals are powerful probes of the model of General Relativity and paired
with electromagnetic counterparts, they offer a window into the energetics of these pow-
erful events. Detecting the signals above the background and/or distinguishing the signal
from an instrumental artifact is an active area of research (Alvarez-Lopez et al. 2023;
Bini et al. 2023; George & Huerta 2018b,a; Razzano et al. 2023; Wang et al. 2023;
Cabero et al. 2020). Assigning an astrophysical host to both fast radio bursts and grav-
itational wave sources is complicated by the uncertainty in spatial localization of the
signal and the density of galaxies in the sky.

1.2.2. Clustering and classification

Once astronomical signals have been detected, a separate goal is to separate the sig-
nals into different classes (or sub-classes) of objects. Supervised approaches use sets
of real or simulated data with labels to train machine learning algorithms to recog-
nize characteristic features in the data. These data typically contain changing flux in
a given electromagnetic band (optical, radio, X-ray etc.) as a function of time. In the
case of FRBs, various machine learning methods have been developed to classify these
objects and distinguishing them apart from radio frequency interference (RFI) signals
present in the data, including supervised (Connor & van Leeuwen 2018; Zhang et al. 2020;
Agarwal et al. 2020) and unsupervised methods Zhu-Ge et al. (2023). In the case of the
gravitational wave data, recent approaches separate the detected signals into different
classes based on models of distances to the detected signals (T. C. Abbott et al. 2022).
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In both cases, very rapid follow-up of sources by complementary telescopes maximizes
the scientific return of the observation, and so classifiers need to return results in a short
period of time. Similar time constraints exist for the classification of events in gamma ray
and X-ray telescopes, where detections of interest need to be flagged and communications
sent out to other telescopes for ‘target-of-opportunity’ observations (Tohuvavohu et al.
2020; DeLaunay & Tohuvavohu 2022).

In optical astronomy, time-series classification and clustering has enjoyed a longer his-
tory of development. In this case detection itself is less of a challenge as the signals
typically trigger a discovery ‘alert’ depending on a brightness threshold relative to the
background noise. ‘Forced’ or archival photometric data are then produced from obser-
vations of the same location on the sky before the outburst/detection to determine the
pre-outburst brightness of the host or environment.

1.2.3. Inference

While ML algorithms can provide predictive results for the detection or classification
of new signals within noisy data, physicists are driven by the need to understand under-
lying processes that govern the behaviour of stars, galaxies, planets and the cosmos. In
order to infer parameters of the model and uncertainties, very different machine learning
architectures must be used. One method used to perform inference using ML is using
Bayesian Neural Networks. In this formalism, weights and biases attached to the neural
network are not specified as individual parameters but with probability distributions. The
result of these distributions is that they can yield post facto distributions in the learned
parameters of the network, providing model output that is more interpretable and trans-
ferable. While the approach of adding uncertainty to model networks was around from
the early 1990s (Denker & LeCun 1990; Buntine & Weigend 1991; MacKay 1992), the
application to modern machine learning gathered steam in recent years (Blundell et al.
2015) and is now commonly used in astrophysics to build models of galaxy formation
and morphology (Walmsley et al. 2019; Dunn et al. 2023; Reza et al. 2022; Piras et al.
2023; Lucie-Smith et al. 2023), supernova modelling (Stein et al. 2022) and large-scale
structure clustering (Sullivan et al. 2023; Modi et al. 2021), to name but a few examples.

2. Some Pitfalls/Critiques of Machine learning in Astronomy

In order to take full advantage of the machine assisted revolution in astronomy, we need
to understand and address some of the critiques leveled at the use of machine learning in
astronomy. We list some of the common pitfalls and describe attempts by the community
to address them.

2.1. Machine Learning provides ‘black boxes’ without any physics understanding

The use of machine learning in astronomy/physics is often criticized for being a ‘black
box’ that is not understood, or that parts of the model are not transparently discussed. As
Rudin (2018) defines it, this black box could be because the model is a function that is too
complicated (e.g. recursive) for any human to comprehend or that the function contains
parts that are proprietary (something more common in medical, rather than astronomical
applications). A key distinction that Rudin makes is between the explainability of the
black box/algorithm, and the interpretability of the model. It is the latter that is of
most interest in physics, as whatever model is used, we want it to illuminate wherever
possible the underlying physical processes that the system is trying to model. Moreover,
some astronomers see machine learning models as tools to use within the context of their
analysis, and use off-the-shelf methods and tools to ensure speed and robustness of their
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Figure 2. The Grad-CAM algorithm uses a class activation map weighted by the gradient
information flowing into the final layer of a CNN to determine which parts of the data (in
this case an image) are yielding the classification of ‘cat’ or ‘dog’. Figure reproduced from
(Selvaraju et al. 2016).

analysis pipelines. As such, less time is often spent on either justifying the approach
used (or the selection of the network architecture) and explaining why it is useful in the
specific astronomical context. This ‘means-to-an-end’ approach can perpetuate the myth
that these tools lack value or that they do not allow for deeper understanding of the
physics.

As outlined in Grojean et al. (2022), some methods have been introduced to develop
post facto interpretability of trained ML models, including ‘local’ methods that trace
every outcome in terms of all the input variables provided (e.g. LIME, Tulio Ribeiro et al.
2016), or more global methods analyse which variables are the most ‘important’ to the
algorithm, or that produce the most variation of output through variables like the Gini
coefficient (Giorgi & Gigliarano 2017).

In order to understand what their machine-learning algorithms are learning (or
rather, what in the data they are responding to), methods like Gradient-weighted Class
Activation Mapping (Grad-CAM, Selvaraju et al. 2016) to determine what parts of an
image determine the classification/typing of the image. Grad-CAM is based on the Class
Activation Mapping (CAM, Zhou et al. 2015) method which creates class activation maps
by using the global average pooling performed in Convolutional Neural Networks (CNNs
Fukushima 1980) to indicate parts of the image associated with the target category.
Illustrated in Figure 2, the Grad-CAM algorithm modifies this by using the gradient
information flowing into the final convolutional layer of the network as a measure of the
importance of each neuron to the particular region of the image/data in determining
the classification. This method is more robust to the underlying CNN and can provide
useful insight into what features your machine learning method is actually learning.
This has successfully been applied to the astronomical context in determining what the
ML algorithms were learning when determining whether a gravitational wave signal was
astrophysical or an instrumental glitch (T. C. Abbott et al. 2022, as shown in Figure 3).

Others use the approach of using regressive algorithms to ‘directly infer’ physical
laws themselves. Schmidt & Lipson (2009) suggested that they could recover natural
physical laws from observations alone by using machine learning methods, however fur-
ther inspection by Hillar & Sommer (2012) suggested that their fitness functions within
the algorithm incorporated Hamilton’s equations of motions and Newton’s second law
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Figure 3. Grad-CAM as applied to GWSkyNet classifications of binary black hole or neutron
star pairs. Figure reproduced from (T. C. Abbott et al. 2022).

directly. Hillar & Sommer (2012) suggest ways to enforce a general fitness function that
is not prone to this bias.

In the past decade, physics-informed machine learning models (Raissi et al. 2019)
incorporate physical laws (for example those that govern the time-dependent dynamics
of the system or those that control the energy budget) directly into the algorithm as prior
information, rather than applying a generic machine-learning algorithm to the problem
and assuming no prior information. Including these laws as rules into the learning algo-
rithm itself can lead to more efficient and robust algorithm performance on complex
problems in physics, and can reduce the dependence on training, or allow unsupervised
training altogether. See (Karniadakis et al. 2021) for a review of these methods and their
applicability to problems in physics and mathematics.

Applying these physics-aware or physics-based machine learning approaches to solve
problems in physics and astronomy is a growing area of study and has particular appli-
cability in the study of nonlinear dynamics and fluid mechanics (see e.g. Shukla et al.
2022; Dai et al. 2023; Rosofsky et al. 2022; Karpov et al. 2022; Iyer et al. 2022; Lucie-
Smith et al. 2023; Ntampaka et al. 2021). A challenge suggested in Nord et al. (2019) is
to facilitate the use of these physics-informed algorithms to solve some of the large and
complex modeling required in the current age of large astronomical data.

2.2. Machine learning does not provide error estimates

Another criticism leveraged against machine learning methods historically has been
a lack of meaningful error estimates from ‘black box’ models, however the past decade
has seen the introduction of ML approaches specifically designed to provide uncertainty
estimates on the parameters of interest within a model. These innovations were devel-
oped to enable machine learning inference of the model parameters (a few examples of
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current uses of inference in astronomy are included above). In fact, there is a move in
the community to compare different approaches of uncertainty quantification (UQ) in

physics and astronomy (see Caldeira & Nord 2020; Psaros et al. 2023; Ćiprijanović et al.
2022; Mohan et al. 2022; Ntampaka & Vikhlinin 2022, for some recent examples).

Machine-learning approaches and methods are being developed at a somewhat faster
pace than the general astronomical community up-take. However, community standards
continue to evolve towards these more interpretable approaches. Astronomy research
planning efforts in e.g. the United States and Canada occur every decade and included
these planning efforts are white papers and discussions on machine learning trends,
resources and challenges – provided a natural platform for the discussions to move the
field towards methods that can provide uncertainty estimates, are interpretable and
physically motivated (e.g. Nord et al. 2019; Dvorkin et al. 2022; Siemiginowska et al.
2019).

2.3. Machine learning compresses (and loses) information

In order to process large data sets through machine learning algorithms, these data are
often ‘compressed’ onto a smaller set of features/axes/vectors of information. While this
can be criticized as ‘losing information’ in the system (e.g. by splitting up a video into
many still frames, thereby potentially losing the temporal connection between successive
frames), it is also important to address the problem of over-fitting in ML analyses. This
occurs when the ML model starts fitting to noise in the data set, given enough model
flexibility.

Deep learning methods were developed specifically to handle very large and complex
data sets (e.g. 2D images and human speech) where there is a risk of under-fitting/not
building a complete and predictive model. Changes to model complexity and network
architecture can be made to ensure that the model does not have too much flexibility
and freedom if there is concern of overfitting noise. Here we can learn from colleagues in
optics and machine vision, who investigate when (and what) data to add into a system to
obtain model that is optimally fit and that remains predictive (Boulahia et al. 2021). The
challenge remains for the astronomy community to test and review any ML framework
used for a specific analysis rather than dismissing the tools themselves. Some groups
are already thinking at this abstract level and evaluating robustness, (Ćiprijanović et al.
2022), and examining how we can generalize the generating and simulating of data sets
for such machine-learning contests (Lewis et al. 2022).

3. Leveraging data challenges in Astronomy machine learning

Astronomy has a rich history of simulating data sets in advance of telescope opera-
tions, and through regular advances in telescope development, has been in a ‘data-rich’
paradigm for many years. While the era of ‘data-deluge’ from large survey instruments
like the Vera C. Rubin Observatory (Rubin Obs, LSST Science Collaboration et al.
2009; Bianco et al. 2022; LSST Dark Energy Science Collaboration 2012) and the Square
Kilometer Array (SKA, Square Kilometre Array Cosmology Science Working Group et al.
2020) will soon be upon us, using current surveys (see e.g. van Roestel et al. 2021;
T. M. C. Abbott et al. 2022) and simulations of the sky we will observe with these
new facilities (LSST Dark Energy Science Collaboration (LSST DESC) et al. 2021;
Levrier et al. 2009; Ramı́rez-Pérez et al. 2022). This ability to simulate, and to test
pipelines on existing data sets with ‘known’ ground truth, and the community standard
of transferring methods to different observing conditions and telescope configurations is
a competitive advantage in astronomy, and one that distinguishes us from other data-rich
fields where simulations are either extremely costly to obtain, complicated, or where data
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are highly individualized due to experimental conditions (An 2018; Klingner et al. 2022;
Errington et al. 2021).
What makes an effective astronomical machine-learning data challenge? Boscoe et al.

(2022) describe how effective astronomical data challenges need to have well-defined data
points (including only what is relevant to the challenge, ensuring there are tags for data
quality, including well-modeled uncertainties) and even make recommendations for the
structural form of data (HDF5 rather than the common FITS format that is so common
in astronomy. In addition to the data format, it is important to have well-structured and
easy to access metadata, to enable supervised learning without the full domain knowledge
that is sometimes mistakenly assumed of astronomers participating in these challenges.
These recommendations for the well-defined data, data-structure and metadata can be
encapsulated in the recommendation that the data challenge goals are clearly defined
and articulated to participants, that any required domain knowledge is communicated
and that the performance metrics are well-established and communicated. This can be
challenging given the multi-variate needs of the astronomical community interested in
a particular data challenge, however the preparatory work in defining goals, assumed
knowledge and metrics can greatly change the number of potential participants and the
success of the challenge. We highlight a few astronomical challenges below.

3.1. Time-series classification challenges

The sky has some objects in it (galaxies, groups and clusters of galaxies) that change
slowly with time, other objects that fluctuate in brightness (e.g. energetic jets from the
centre of galaxies, spinning neutron stars or pulsating stars nearing stellar death) and
‘new’ or transient objects that are a result of explosions, the collision of pairs of massive
objects or other undefined phenomena. Classifying these transient objects into different
categories is needed in order to analyze specific samples/types, and astronomers have
been developing tools for rapid classification in tandem with the increase in the survey
speed of new telescopes. Early surveys like the Catalina Real-Time Transient Sky Surveys
(Drake et al. 2012) and the Palomar-Quest Digital Synoptic Sky Survey (Djorgovski et al.
2008) ushered in an era of wide-field transient science and presented lessons learned for
processing of transient notifications or ‘alerts’ (see e.g. Graham et al. 2012). The Sloan
Digital Sky Survey (Kessler et al. 2009; Sako et al. 2018) was focused on developing a
sample of Type Ia supernovae (SNIa) for cosmological analysis and developed methods
to classify the observed transients into different types to facilitate spectroscopic follow
up of likely SNIa candidates.

Recognizing the challenges that this classification had presented, Kessler et al. devel-
oped the Supernova Photometric Classification Challenge (SNPhotCC, Kessler et al.
2010) which was a classification challenge based on simulated supernovae of three dif-
ferent types assuming the photometric properties of a survey like the (then upcoming)
Dark Energy Survey. The challenge led to broad community participation (Kessler et al.
2010) and engaged new groups in optical classification. The challenge highlighted that the
community particularly struggled with the increase of data (and increase in noise) with
survey depth, and that the change in relative numbers of different populations when
going from precursor data to larger volume data sets. As a result, when simulating a
new survey for the upcoming Rubin Observatory, the Photometric LSST Astronomical
Time-series Classification Challenge (PLAsTiCC, Kessler et al. 2019; Hložek et al. 2020;
Malz et al. 2018) included many more types of transients, a large difference in the size
of the training sample relative to the test sample (as shown in Figure 4), and a collec-
tion of rare objects that were explicitly excluded from any labelled training data. The
three-month PLAsTiCC (hosted on a public data challenge website at Kaggle.com) had
over 1000 participants from within and outside the astronomical community and has
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Figure 4. The � 8000 objects in the training set and 3.5 million test objects in the PLAsTiCC
survey. The size of the boxes are proportional to the relative numbers in each set and the absolute
numbers are in parentheses. Figure reproduced from Hložek et al. (2020).

already led to 45 publications on methods and approaches to classification and anomaly
detection.

This challenge included time-series data for the full LSST survey from Rubin, as pro-
cessed flux measurements. The primary way that new transients will be communicated
from the telescope, however, is through packages of ‘alerts’ released by the telescope to
a specific set of alert brokers developed within the community. The next instalment
in developing classification challenges was to provide the light curves in this ‘alert’
format, and to increase the complexity of the simulations to control for host environ-
ment (Lokken et al. 2023). The Extended LSST Astronomical Time-series Classification
Challenge (ELAsTiCC, Narayan & ELAsTiCC Team 2023) was focused at these brokers,
testing their ability to ingest and process (and classify) a stream of alerts similar to what
will be generated from Rubin. The challenge is available online.

PLAsTiCC and ELAsTiCC are broad challenges including a range of different object
types. Narrower, domain-specific classification challenges can include more model variety
and employ more specific science-focused metrics for evaluating performance between
methods. The LSST AGN classification challenge (Yu et al. 2022) provided mock obser-
vations based on templates from existing data and focused on assessing the ability
of participants to select AGN and parameterize their light-curves, and the ability to
determine the photometric redshift of the AGN candidate.

While not considered ‘transient’, finding planets around other stars requires similar
techniques as the exoplanets often transit their host stars, or generate faint shifts to
the motion of the host star. The Radial Velocity Challenge (Dumusque et al. 2017)
simulated radial velocity signals (Dumusque 2016) from the ‘wobble’ that an exoplanet
would generate for its host star. The challenge was focused on testing methods in advance
of the Transiting Exoplanet Survey Satellite (TESS, Ricker et al. 2014).

The Laser Interferometer Space Antenna (LISA) Data challenges (Baghi 2022) are
a series of challenges designed to test community methods for extracting gravitational
wave signals from noisy data in preparation for the European Space Agency (ESA)- and
NASA-funded LISA mission, with the current purpose of tackling mild source confusion
within an idealized instrumental noise framework. The current challenge continues a
long line of previous challenges developed by the Mock LISA Data Challenge task force
(Babak et al. 2008) to prepare the community for LISA analysis.

Similarly, the Australian Square Kilometre Array Pathfinder (ASKAP) group designed
a data challenge to test the fidelity of radio source finding (Hopkins et al. 2015) for
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the SKA pathfinder, and led to other challenges focused on specific telescopes like the
PARKES radio telescope (Yong et al. 2022) and the SKA itself (Hartley et al. 2023), and
the development of new methods and approaches (Vafaei Sadr et al. 2019; Riggi et al.
2019; Bonavera et al. (2021).

3.2. Image analysis challenges

While transient surveys focus on identifying specific types of objects that
appear/disappear or vary in brightness on the sky, astronomers interested in the ‘static
sky’ are often more concerned with measuring the shape of objects, classifying objects
into different types (e.g. spiral or elliptical galaxies).

For example, the GRavitational lEnsing Accuracy Testing challenges (GREAT,
Mandelbaum et al. 2014; Kitching et al. 2010) required participants to develop lens-
ing shear estimators and compared performance on increasingly complex simulated test
data. The LSST-DESC 3x2pt Tomography Optimization Challenge (Zuntz et al. 2021),
was challenge with a more specialized purpose: to determine the optimal tomographic
binning scheme for a photometric survey for measurements of the ‘3x2pt’ (the three dif-
ferent types of two-point correlation function measurements used as the data observable
that summarizes the clustering of galaxies, and the shapes of those galaxies as they are
distorted by cosmic lensing.) This challenge, targeted at members of the LSST Dark
Energy Science Collaboration (DESC) was a way to galvanize the DESC community to
generating an optimal method of defining samples for the upcoming Rubin LSST survey.

The above lensing challenges focus on the subtle affects from weak gravitational lensing.
‘The Strong Gravitational Lens Finding Challenge’ (Metcalf et al. 2018) instead asked
participants to identify 100,000 candidate strong lens systems from millions of noisy
images. By comparing algorithm performance across all entries, the challenge presented
also gained new insights e.g. for the need for multi-band imaging in order to correctly
identify strong lens systems.

3.3. The power of citizen science

While many challenges in astronomy are reasonably technical and can require some
amount of domain knowledge, large-scale challenges that take advantage of the energy
of ‘citizens’ can generate large amounts of data and find novel objects. One of the classic
examples of citizen science is the Galaxy Zoo project (Lintott et al. 2008), which started
off asking citizens to make simple classifications between spiral and elliptical galaxies in
SDSS images, but has grown to encompass citizen science challenges across disciplines (see
the full suite at zooniverse.org) and led to the discovery in astronomy of novel objects like
the ‘green pea’ galaxies, named after their greenish appearance and small size in the SDSS
images. Further study of these new objects discovered by the citizen scientists revealed
their role in the reionization of the universe (Cardamone et al. 2009). The classifications
from citizen science volunteers can then be used to train and refine machine-learning
methods for discovery and classification (Andersson et al. 2023; Peek & White 2021;
Kruk & Meŕın 2023; Razzano et al. 2023; Jimenez et al. 2023).

4. Conclusions

Data challenges are an important step in preparing for the complexity of future data
sets, and for developing new approaches to analyze current data. Astronomers have the
benefit of extensive and well-labelled existing data sets, and the community practice of
simulating new data with different intrinsic properties and observing conditions. When
developing a data challenge for training/testing machine learning methods in astronomy,
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the first step should be reducing and controlling the complexity of the data presented,
and deciding on the limited number of goals of the challenge.

These astronomical challenges provide great ways of galvanizing the astronomical com-
munity to develop new methods, and if well-curated the data set will remain useful well
beyond the individual data challenge. It may be that data challenges need to be devel-
oped in stages, increasing the complexity of the data used in each stage, and relaxing
additional assumptions about metadata or data complexity with each challenge. Rather
than seeing this as a bug, it can be approached as a smooth way to understand the
community response to data complexity.

A challenge that remains for the community is to include rewards for methods that are
physically interpretable, and to develop standards for how to communicate and derive
machine learning solutions to problems in astronomy. We are lucky as a community to
continually have exciting new data on the horizon, and look forward to more machine-
assisted solutions to understand the Universe.
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Jimenez, M., Alfaro, E. J., Torres Torres, M., & Triguero, I. (2023, February). CzSL: Learning
from citizen science, experts and unlabelled data in astronomical image classification. arXiv
e-prints, arXiv:2302.00366. doi: 10.48550/arXiv.2302.00366

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021,
January). Physics-informed machine learning. Nature Reviews Physics, 3 (6), 422–440. doi:
10.1038/s42254-021-00314-5

Karpov, P. I., Huang, C., Sitdikov, I., Fryer, C. L., Woosley, S., & Pilania, G. (2022, November).
Physics-informed Machine Learning for Modeling Turbulence in Supernovae. ApJ, 940 (1),
26. doi: 10.3847/1538-4357/ac88cc

Kessler, R., Bassett, B., Belov, P., Bhatnagar, V., Campbell, H., Conley, A., ... Varughese,
M. (2010, December). Results from the Supernova Photometric Classification Challenge.
Publications of the Astronomical Society of the Pacific, 122, 1415. doi: 10.1086/657607

Kessler, R., Becker, A. C., Cinabro, D., Vanderplas, J., Frieman, J. A., Marriner, J., ...
York, D. (2009, November). First-Year Sloan Digital Sky Survey-II Supernova Results:
Hubble Diagram and Cosmological Parameters. ApJS, 185 (1), 32–84. doi: 10.1088/0067-
0049/185/1/32

Kessler, R., Narayan, G., Avelino, A., Bachelet, E., Biswas, R., Brown, P. J., ... Transient and
Variable Stars Science Collaboration (2019, Sep). Models and Simulations for the Photo-
metric LSST Astronomical Time Series Classification Challenge (PLAsTiCC). Publications
of the Astronomical Society of the Pacific, 131 (1003), 094501. doi: 10.1088/1538-
3873/ab26f1

Kitching, T., Balan, S., Bernstein, G., Bethge, M., Bridle, S., Courbin, F., ... Voigt, L.
(2010, September). Gravitational Lensing Accuracy Testing 2010 (GREAT10) Challenge
Handbook. arXiv e-prints, arXiv:1009.0779. doi: 10.48550/arXiv.1009.0779

Klingner, C. M., Denker, M., Grün, S., Hanke, M., Oeltze-Jafra, S., Ohl, F. W., ... Ritter,
P. (2022). Overcoming the reproducibility crisis - results of the first community sur-
vey of the german national research data infrastructure for neuroscience. bioRxiv. doi:
10.1101/2022.04.07.487439
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