Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T03:40:31.850Z Has data issue: false hasContentIssue false

Interrelationships between the Gastrointestinal Microflora and Non-Nutrient Components of the Diet

Published online by Cambridge University Press:  14 December 2007

Marie E. Coates
Affiliation:
School of Biological Sciences, University of Surrey, Guildford, SurreyGU2 5XH
R. Walker
Affiliation:
School of Biological Sciences, University of Surrey, Guildford, SurreyGU2 5XH
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1992

References

REFERENCES

Aeschbacher, H.-U. (1982). The significance of mutagens in food. In Mutagens in our Environment (Progress in Clinical and Biological Research 109) pp. 349362. [Sorsa, M., editor]. New York: Alan Liss.Google Scholar
Bardocz, S., Brown, D. S., Grant, G. & Pusztai, A. (1990). Luminal and basolateral polyamine uptake by rat small intestine stimulated to grow by Phaseolus vulgaris lectin phytohaemagglutinin in vivo. Biochimica et Biophysica Acta 1034, 4652.CrossRefGoogle ScholarPubMed
Bartholomew, B. A., Hill, M. J., Hudson, M. J., Ruddell, W. S. J. & Walters, C. L. (1980). In Gastric Bacteria, Nitrite, Nitrite and Nitrosamines in Patients with Pernicious Anaemia and Patients Treated with Cimetidine, pp. 595608 [Walker, E. A., Gricuite, L., Castegnara, M., Borzonyil, M. and Davis, W., editors]. Lyon: International Agency for Research on Cancer.Google ScholarPubMed
Bartsch, H. & Montesano, R. (1984). Relevance of nitrosamines to human cancer. Carcinogenesis 5, 13811393.CrossRefGoogle ScholarPubMed
Bashir, M., Kingston, D. G. I., Carman, R. J., van Tassell, R. L. & Wilkins, T. D. (1987). Anaerobic metabolism of 2-amino-3-methyl-3H-imidazo[4,5-f]quinoline (IQ) by human fecal flora. Mutation Research 190, 187190.Google ScholarPubMed
Beresford, S. A. A. (1985). Is nitrate in the drinking water associated with the risk of cancer in the urban UK? International Journal of Epidemiology 14, 5763.CrossRefGoogle ScholarPubMed
Bickel, M. H., Burkard, B., Meier-Strasser, E. & van den Brock-Boot, M. (1974). Entero-bacterial formation of cyclohexylamine in rats ingesting cyclamate. Xenobiotica, 4, 425439.CrossRefGoogle ScholarPubMed
Bokkenhauser, V. D. & Winter, J. (1989). Catabolism of flavonoids by bacteria of the alimentary tract: formation of potential anticarcinogens. In The Regulatory and Protective Action of the Normal Microflora, pp. 379391 [Grubb, R., Midtvedt, T. and Norin, E., editors]. Basingstoke: Macmillan Press Ltd.CrossRefGoogle Scholar
Bopp, B. A., Sonders, R. C. & Kesterson, J. W. (1986). Toxicological aspects of cyclamate and cyclohexylamine. CRC Critical Reviews in Toxicology 16, 213306.CrossRefGoogle ScholarPubMed
Brown, J. B. (1988). Hydrolysis of glycosides and esters. In Role of the Gut Flora in Toxicity and Cancer, pp. 109144 [Rowland, I. R., editor]. London: Academic Press.CrossRefGoogle Scholar
Carman, R. J., van Tassell, R. L., Kingston, D. G. I., Bashir, M. & Wilkins, T. D. (1988). Conversion of IQ, a dietary pyrolysis carcinogen, to a direct-acting mutagen by normal intestinal bacteria of humans. Mutation Research 206, 335342.CrossRefGoogle ScholarPubMed
Coates, M. E. (1987). The importance of the gastrointestinal microflora to the nutrition of the host. BNF Nutrition Bulletin 12 (50), 8796.CrossRefGoogle Scholar
Coates, M. E. & Gustafsson, B. E. [editors] (1984). The Germ-free Animal in Biomedical Research. London: Laboratory Animals Ltd.Google Scholar
Coates, M. E., Hewitt, D. & Golob, P. (1970). A comparison of the effects of raw and heated soya-bean meal in diets for germ-free and conventional chicks. British Journal of Nutrition 24, 213225.CrossRefGoogle Scholar
Collings, A. J. (1971). The metabolism of sodium cyclamate. In Sweetness and Sweeteners, pp. 5168 [Birch, G. G., Green, L. F. and Coulson, C. M., editors] London: Elsevier Applied Science Publishers Ltd.Google Scholar
Corbett, T. H., Bissery, M. C., Wozniak, A., Plowman, J., Polin, L., Tapazoglou, E., Dieckman, J. & Valeriote, F. (1986). Activity of flavone acetic acid (NSC-347512) against solid tumors of mice. Investigational New Drugs 4, 207220.CrossRefGoogle ScholarPubMed
Forman, D., Al-Dabbagh, S. & Doll, R. (1985). Nitrates, nitrites and gastric cancer in Great Britain. Nature 313, 620625.CrossRefGoogle ScholarPubMed
Goldman, P. (1978). Biochemical pharmacology of the intestinal flora. Annual Review of Pharmacology and Toxicology 18, 523539.CrossRefGoogle ScholarPubMed
Goodlad, R. A., Ratcliffe, B., Fordham, J. P. & Wright, N. A. (1989). Does dietary fibre stimulate intestinal epithelial cell proliferation in germfree rats? Gut 30, 820825.CrossRefGoogle Scholar
Green, L. C. & Tannenbaum, S. R. (1982). Nitrate, nitrite, and N-nitroso compounds. Biochemistry, metabolism, toxicology and carcinogenicity. In Human Nutrition, pp. 87140 [Neuberger, A. and Jukes, T. H., editors]. Lancaster: MTP Press.CrossRefGoogle Scholar
Green, L. C., Tannenbaum, S. R. & Goldman, P. (1981). Nitrate synthesis in the germfree and conventional rat. Science 212, 5658.CrossRefGoogle ScholarPubMed
Hill, M. J., Hawksworth, G. M. & Tattershall, G. (1973). Bacteria, nitrosamines and cancer of the stomach. British Journal of Cancer 28, 562567.CrossRefGoogle ScholarPubMed
Jayne-Williams, D. J. & Hewitt, D. (1972). The relationship between the intestinal microflora and the effects of diets containing raw navy beans (Phaseolus vulgaris) on the growth of Japanese quail (Coturnix coturnix japonica). Journal of Applied Bacteriology 35, 331344.CrossRefGoogle ScholarPubMed
Klubes, P., Cerna, I., Rabinowitz, A. D. & Jondorf, W. R. (1972). Factors affecting dimethylnitrosamine formation from simple precursors by rat intestinal bacteria. Food and Cosmetics Toxicology 10, 757767.CrossRefGoogle ScholarPubMed
Knize, M. G., Övervik, E., Midtvedt, T., Turteltaub, K. W., Happe, J. A., Gustafsson, J.-Å. & Felton, J. S. (1989). The metabolism of 4,8-DiMeIQx in conventional and germ-free rats. Carcinogenesis 10, 14791484.CrossRefGoogle Scholar
Laqueur, G. L., Mickelsen, O., Whiting, M. G. & Kurland, L. T. (1963). Carcinogenic properties of nuts from Cycas circinalis L. indigenous to Guam. Journal of the National Cancer Institute 31, 919951.Google ScholarPubMed
Liener, I. E. [editor] (1969). Toxic Constituents of Plant Foodstuffs. London: Academic Press.Google Scholar
Mallett, A. K., Bearne, C. A., Rowland, I. R., Farthing, M. J. G., Cole, C. B., & Fuller, R. (1987). The use of rats associated with a human faecal flora as a model for studying the effects of diet on the human gut microflora. Journal of Applied Bacteriology 63, 3945.CrossRefGoogle Scholar
Miwa, M., Stuehr, D. J., Marletta, M. A., Wishnok, J. J. & Tannenbaum, S. R. (1987). Nitrosation of amines by stimulated macrophages. Carcinogenesis 8, 955958.CrossRefGoogle ScholarPubMed
Modan, B., Lubin, F., Barell, V., Greenberg, R. A., Modan, M. & Graham, S. (1977). The role of starches in the etiology of gastric cancer. Cancer 40, 18871891.3.0.CO;2-E>CrossRefGoogle Scholar
Nakayama, K., Kasahara, D. & Yamamoto, F. (1986). Absorption, distribution, metabolism and excretion of stevioside in rats. Journal of the Food Hygienic Society of Japan 27, 18.CrossRefGoogle Scholar
Newmark, J., Brady, R. O., Grimley, P. M., Gal, A. E., Waller, S. G. & Thistlethwaite, J. R. (1981). Amygdalin (laetrile) and prunasin β-glucosidases: distribution in germ-free rat and in human tumor tissue. Proceedings of the National Academy of Sciences, USA 78, 65136516.CrossRefGoogle ScholarPubMed
Nielsch, A. S., Ward, F. W., Coates, M. E., Walker, R. & Rowland, I. R. (1991). Influence of dietary protein and gut microflora on endogenous synthesis of nitrate induced by bacterial endotoxin in the rat. Food and Chemical Toxicology 29, 387390.CrossRefGoogle ScholarPubMed
Nishino, H., Nagao, M., Fujiki, H. & Sugimura, T. (1983). Role of flavonoids in suppressing the enhancement of phospholipid metabolism by tumor promoters. Cancer Letters 21, 18.CrossRefGoogle ScholarPubMed
Ohshima, H., Bereziat, J.-C. & Bartsch, H. (1982). Monitoring N-nitroso amino acids excreted in the urine and faeces of rats as an index for endogenous nitrosation. Carcinogenesis 3, 115120.CrossRefGoogle Scholar
Payne, W. J. (1973). Reduction of nitrogenous oxides by microorganisms. Bacteriological Reviews 37, 409452.CrossRefGoogle ScholarPubMed
Pezzuto, J. M., Compadre, C. M., Swanson, S. M., Nanayakkara, N. P. D. & Kinghorn, A. D. (1985). Metabolically activated steviol, the aglycone of stevioside, is mutagenic. Proceedings of the National Academy of Sciences, USA 82, 24782482.CrossRefGoogle ScholarPubMed
Pocock, S. J. (1985). Nitrates and gastric cancer. Human Toxicology 4, 471474.CrossRefGoogle ScholarPubMed
Pusztai, A., Begbie, R., Grant, G., Ewen, S. W. B. & Bardocz, S. (1992). Nutrition Abstracts and Reviews, in press.Google Scholar
Pusztai, A., Ewen, S. W. B., Grant, G., Peumans, W. J., van Damme, E. J. M., Rubio, L. A. & Bardocz, S. (1990 a). Relationship between survival and binding of plant lectins during small intestinal passage and their effectiveness as growth factors. Digestion 46, Suppl. 2, 308316.CrossRefGoogle ScholarPubMed
Pusztai, A., Grant, G., Ewen, S. W. B., Brown, D. S. & Bardocz, S. (1990 b). Phaseolus vulgaris lectin (PHA) induces growth of rat small intestine. Proceedings of the Nutrition Society 49, 144A.Google Scholar
Pusztai, A., Grant, G., King, T. P. & Clarke, E. M. W. (1990 c). Chemical probiosis. In Recent Advances in Animal Nutrition–1990, pp. 4760 [Haresign, W. and Cole, D. J. A., editors]. London: Butterworths.CrossRefGoogle Scholar
Rafter, J. J. & Gustafsson, J.-A. (1986). Metabolism of the dietary carcinogen TRP-P-l in rats. Carcinogenesis 7, 12911295.CrossRefGoogle ScholarPubMed
Rattray, E. A. S., Palmer, R. & Pusztai, A. (1974). Toxicity of kidney beans (Phaseolus vulgaris L.) to conventional and gnotobiotic rats. Journal of the Science of Food and Agriculture 25, 10351040.CrossRefGoogle ScholarPubMed
Reddy, B. S., Pleasants, J. R. & Wostmann, B. S. (1973). Metabolic enzymes in liver and kidney of the germfree rat. Biochimica et Biophysica Acta 320, 18.CrossRefGoogle ScholarPubMed
Renwick, A. G. (1983). The fate of non-nutritive sweeteners in the body. In Developments in Sweeteners–2, pp. 179224 [Grenby, T. H.Parker, K. J. and Lindley, M. G. editors]. London: Elsevier Applied Science Publishers Ltd.Google Scholar
Renwick, A. F. (1988). Intense sweeteners and the gut microflora. In Role of the Gut Flora in Toxicity and Cancer, pp. 175206. [Rowland, I. R., editor]. London: Academic Press.CrossRefGoogle Scholar
Rowland, I. R. & Davies, M. J. (1981). In vitro metabolism of inorganic arsenic by the gastro-intestinal microflora of the rat. Journal of Applied Toxicology 1, 278283.CrossRefGoogle ScholarPubMed
Rowland, I. R. & Davies, M. J. (1982). Reduction and methylation of sodium arsenate in the rat. Journal of Applied Toxicology 2, 294299.CrossRefGoogle ScholarPubMed
Rowland, I. R., Robinson, R. D., Doherty, R. A. & Landry, T. D. (1983). Are developmental changes in methylmercury metabolism and excretion mediated by the intestinal microflora? In Reproductive and Developmental Toxicity of Metals, pp. 745758 [Clarkson, T. W.Nordberg, G. F. and Sager, P. R., editors]. New York: Plenum Press.CrossRefGoogle Scholar
Savage, D. C. (1989). The normal human microflora-composition. In The Regulatory and Protective Role of the Normal Microflora, pp. 318 [Grubb, R.Midtvedt, T. and Norin, E., editors]. Basingstoke: Macmillan Press Ltd.CrossRefGoogle Scholar
Scheline, R. R. (1973). Metabolism of foreign compounds by gastrointestinal microorganisms. Pharmacological Reviews 25, 451523.Google ScholarPubMed
Sharon, N. (1987). Bacterial lectins, cell–cell recognition and infectious disease. FEBS Letters 217, 145157.CrossRefGoogle ScholarPubMed
Spatz, M., Smith, D. W. E., McDaniel, E. G. & Laqueur, G. L. (1967). Role of intestinal microorganisms in determining cycasin toxicity. Proceedings of the Society for Experimental Biology and Medicine 124, 691697.CrossRefGoogle ScholarPubMed
Spiegelhalder, B., Eisenbrand, G. & Preussmann, R. (1976). Influence of dietary nitrate on nitrite content of human saliva: possible relevance to in vivo formation of N-nitroso compounds. Food and Cosmetics Toxicology 14, 545548.CrossRefGoogle ScholarPubMed
Stuehr, D. J. & Marletta, M. A. (1985). Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proceedings of the National Academy of Sciences, USA 82, 77387742.CrossRefGoogle ScholarPubMed
Stuehr, D. J. & Marletta, M. A. (1987). Synthesis of nitrite and nitrate in murine macrophage cell lines. Cancer Research 47, 55905594.Google ScholarPubMed
Sugimura, T. (1985). Carcinogenicity of mutagenic heterocyclic amines formed during the cooking process. Mutation Research 150, 3341.CrossRefGoogle ScholarPubMed
Sugimura, T. & Sato, S. (1983). Mutagens-carcinogens in foods. Cancer Research 43, 2415s2421s.Google ScholarPubMed
Tannenbaum, S. R., Moran, D., Rand, W., Cuello, C. & Correa, P. (1979). Gastric cancer in Colombia. IV. Nitrite and other ions in gastric contents of residents from a high-risk region. Journal of the National Cancer Institute 62, 912.Google ScholarPubMed
Vahter, M. & Gustafsson, B. (1980). Biotransformation of inorganic arsenic in germfree and conventional mice. In Proceedings of the 3rd Symposium on Trace Elements: Arsenic pp. 123129 [Anke, M.Schneider, H.-J. and Bruckner, C., editors]. Jena: Abteilung Wissenschaftliche Publikationen der Friedrich-Schiller Universität.Google Scholar
Walters, C. L. & Smith, P. L. R. (1981). The effect of water borne nitrate on salivary nitrite. Food and Cosmetics Toxicology 19, 297302.CrossRefGoogle ScholarPubMed
Ward, F. W. & Coates, M. E. (1987 a). Gastrointestinal pH measurement in rats: influence of the microbial flora, diet and fasting. Laboratory Animals 21, 216222.CrossRefGoogle ScholarPubMed
Ward, F. W. & Coates, M. E. (1987 b). Dietary fat and N-nitrosation in the rat. British Journal of Nutrition 58, 221231.CrossRefGoogle ScholarPubMed
Ward, F. W., Coates, M. E., Cole, C. B. & Fuller, R. (1990 a). Effect of dietary fats on endogenous formation of N-nitrosamines from nitrate in germ-free and conventional rats and rats harbouring a human flora. Food Additives and Contaminants 7, 597604.CrossRefGoogle ScholarPubMed
Ward, F. W., Coates, M. E., Macdonald, I. & Sims, A. (1988). The effect of dietary fats on N-nitrosamine formation in man. Proceedings of the Nutrition Society 47, 21A.Google Scholar
Ward, F. W., Coates, M. E. & Walker, R. (1986). Nitrate reduction, gastrointestinal pH and N-nitrosation in gnotobiotic and conventional rats. Food and Chemical Toxicology 24, 1722.CrossRefGoogle ScholarPubMed
Ward, F. W., Coates, M. E. & Walker, R. (1989). Influence of dietary protein and gut microflora on endogenous synthesis of nitrate and N-nitrosamines in the rat. Food and Chemical Toxicology 27, 445449.CrossRefGoogle ScholarPubMed
Ward, F., Mallett, A. K., Rowland, I. R. & Coates, M. E. (1990 b). Mutagen activation and foreign compound metabolism by hepatic fractions from germ-free and conventional rats. Biochemical Pharmacology (Life Science Advances) 9, 135143.Google Scholar
Williams, R. T. (1970). In Discussion of ‘The Significance of the Gut Flora in Safety Testing of Food Additives’ by Drasar B. S., Hill, M. J. & Williams, E. O. In Metabolic Aspects of Food Safety, pp. 255260 [Roe, F. J. C., editor]. London: Blackwell.Google Scholar
Wilson, A. B., King, T. P., Clarke, E. M. W. & Pusztai, A. (1980). Kidney bean (Phaseolus vulgaris) lectin-induced lesions in rat small intestine. 2. Microbiological studies. Journal of Comparative Pathology 90, 597602.CrossRefGoogle ScholarPubMed
Wingard, R. E., Brown, J. P., Enderlin, F. E., Dale, J. A., Hale, R. L. & Seitz, C. T. (1980). Intestinal degradation and absorption of the glycosidic sweeteners stevioside and rebaudioside A. Experientia 36, 519520.CrossRefGoogle ScholarPubMed
Witter, J. P., Balish, E. & Gatley, S. J. (1982). Origin of excess urinary nitrate in the rat. Cancer Research 42, 36543658.Google ScholarPubMed
Wostmann, B. S. (1981). The germfree animal in nutritional studies. Annual Review of Nutrition 1, 257279.CrossRefGoogle ScholarPubMed