Mixed-conducting oxides are used in many applications, including fuel cells, gas separation membranes, sesors, and electrocatalysis. This paper describes mixed-conducting ceramic membranes that are being developed to selectively remove oxygen and hydrogen from gas streams in a nongalvanic mode of operation (i.e., with no electrodes or external power supply). Because of its high combined electronic/ionic conductivity and significant oxygen permeability, the mixed-coducting Sr-Fe-Co oxide (SFC) has been developed for high-purity oxygen separation and/or partial oxidation of methane to synthesis gas, i.e., syngas, a mixture of carbon monoxide and hydorgen. The electronic and ionic conductivities of SFC were found to be comparable in magnitude are presented as a function of temperature. The oxygen flux through dense SFC tubes during separation of oxygen from air is compared with the oxygen flux during methane conversion.
Unlike SFC, in which the ionic and electronic conductivities are nearly equivalent, BaCe0.80Y0.20O3 (BCY) exhibits protonic conductivity that is significantly higher that its electronic coductivity. To enhance the electronic conductivity and increase hydrogen permeation, metal powder was combined with the BCY to form a cermet membrane. Nongalvanic permeation of hydrogen through the cermet memebrane was demonstrated and characterized as a function of membrane thickness. A sintering aid was developed to avoid interconnected porosity in and improve the mechanical properties of the cermet membrane.